На сколько изменяется температура с высотой. Вертикальное строение атмосферы

03.03.2020 Финансы

Практический материал для урока географии в 6 классе - УМК: О.А. Климанова, В.В. Климанов, Э.В. Ким. Для рассмотрения предлагаются задачи по теме «Температура воздуха».

Решение географических задач способствует активному усвоению курса географии, формирует общеучебные и специальные географические навыки.

Цели:

Развитие умений высчитывать температуру воздуха на разных высотах, вычислять высоту;

Развитие способностей анализировать, делать выводы.

Как изменяется температура с высотой?

При изменении высоты на 1000 метров (1 км) температура воздуха изменяется на 6°С (при увеличении высоты температура воздуха понижается, а при уменьшении - повышается).

Географические задачи:

1.На вершине горы температура -5 градусов высота горы 4500 м. Определите температуру у подножия горы?

Решение:

На каждый километр вверх температура воздуха понижается на 6 градусов, то есть, если высота горы 4500 или 4,5 км получается, что:

1) 4,5 х 6 = 27 градусов. Это значит, что на 27 градусов понизилась температура, а если на вершине - 5 градусов, то у подножия горы будет:

2) - 5 + 27 = 22 градуса у подножия горы

Ответ: 22 градуса у подножия горы

2.Определите температуру воздуха на вершине горы 3 км, если у подножия горы она составила + 12 градусов.

Решение:

Если через 1 км температура понижается на 6 градусов, следовательно

Ответ: - 6 градусов на вершине горы

3. На какую высоту поднялся самолет, если за его бортом температура -30°С, а у поверхности Земли +12°С?

Решение:

2) 42: 6 = 7 км

Ответ: самолёт поднялся на высоту 7 км

4. Какова температура воздуха на вершине Памире, если в июле у подножия она составляет +36°С? Высота Памира 6 км.

Решение:

Ответ: 0 градусов на вершине горы

5. Определите температуру воздуха за бортом самолета, если температура воздуха у поверхности земли равна 31 градус, а высота полета - 5 км?

Решение:

Ответ : 1 градус температура за бортом самолета

Температура воздуха, безусловно, важный элемент комфортабельности человека. Мне, например, угодить в этом плане очень сложно, зимой я жалуюсь на холод, летом изнываю от жары. Однако этот показатель не статичен, ведь чем выше точка от поверхности Земли, тем там холоднее, но с чем связано подобное положение вещей? Начну с того, что температура - это одно из состояний нашей атмосферы , которая состоит из смеси самых разнообразных газов. Чтобы понять принцип "высотного похолодания", совсем не обязательно углубляться в изучение термодинамических процессов.

Почему изменяется температура воздуха с набором высоты

Еще со времен школьных уроков мне известно, что на вершинах гор и скалистых образований наблюдается снег даже в том случае, если у их подножья достаточно тепло . Это и является главным доказательством того, что на больших высотах может быть очень холодно. Однако не все так категорично и однозначно, дело в том, что при восхождении вверх воздух то остывает, то снова нагревается. Равномерное снижение наблюдается лишь до определенного момента, затем атмосфера в буквальном смысле лихорадит , проходя через следующие этапы:

  1. Тропосфера.
  2. Тропопауза.
  3. Стратосфера.
  4. Мезосфера и т.д.


Температурные колебания в разных слоях

Тропосфера отвечает за большинство погодных явлений , ведь она - самый низкий слой атмосферы, где летают самолеты и образуются облака. Находясь в ней, воздух стабильно замерзает, приблизительно каждые сто метров. Но, достигая тропопаузы, температурные колебания прекращаются и останавливаются в районе -60-70 градусов по Цельсию .


Самое удивительное, что в стратосфере она снижается практически до нуля, поскольку поддается нагреву от ультрафиолетового излучения . В мезосфере тенденция снова идет на снижение, а переход в термосферу сулит рекордный минимум - -225 по Цельсию . Далее происходит снова нагревание воздуха, однако из-за значительной потери в плотности, на этих уровнях атмосферы температура ощущается совсем иначе. По крайней мере, полетам орбитальных искусственных спутников ничто не угрожает.


Публикуется с небольшими сокращениями

Прежде чем рассмотреть распределение температуры воздуха на земной поверхности в наиболее холодные и наиболее теплые месяцы, необходимо сказать об изменении температуры с высотой, так как изотермы всех местностей приводятся к уровню моря; надо знать, каким образом происходит этот процесс приведения.
До сих пор мы говорили о нагревании поверхности земли, теперь рассмотрим условия нагревания воздушной оболочки, соприкасающейся с этой поверхностью.
Нагревание атмосферы происходит, как мы уже говорили, отчасти непосредственно солнцем: пары воды, углекислый газ и пылинки поглощают часть солнечных лучей. Но, главным образом, нагревание воздуха происходит путем передачи тепла от нагретой поверхности земли, теплопроводностью и лучеиспусканием. Чем теплопрозрачность атмосферы меньше (например при большом количестве водяных паров или углекислого газа в воздухе), тем больше задерживает она тепло, испускаемое земной поверхностью, и тем больше, следовательно, нагревается от земли.
По многим причинам следовало бы ожидать, что в верхних слоях воздуха температура будет ниже, чем в нижних: 1) верхние слои атмосферы более разрежены, поэтому они менее задерживают теплоту, получаемую непосредственно от солнца, и 2) нагревание воздуха, главным образом, происходит снизу. Но вместе с тем воздух, как и вода, i стремится расположиться так, чтобы наверху были более теплые и легкие слои, а внизу более холодные и тяжелые. Действительно, воздух, соприкасающийся с земной поверхностью, нагреваясь, расширяется, делается менее плотным и поднимается кверху, а более плотный и холодный воздух опускается вниз. В результате такой циркуляции можно было бы ожидать, что вверху и внизу атмосфера будет иметь одинаковую температуру (по крайней мере в некоторые моменты дня) или температура будет повышаться кверху. На самом же деле наблюдения и опыт показали, что температура в общем понижается с высотой, но причина этого понижения заключается в другом, а именно: поднимающиеся теплые частицы воздуха попадают в более редкие слои, поэтому постепенно расширяются при своем поднятии, причем на расширение тратится известное количество тепла, т. е. работа расширения воздуха происходит за счет его теплоты. При поднятии массы воздуха в атмосфере без притока тепла со стороны, или, как говорят, при адиабатическом процессе, температура этой массы понижается (вследствие расширения) на 1° при поднятии на 100 м. Это положение применимо к сухому воздуху, а также к воздуху, содержащему водяные пары, когда при охлаждении не начинается еще их конденсация. Воздух, насыщенный парами воды, теряет меньше: при поднятии на 100 м он охлаждается не на 1°, а приблизительно на на 0,5-0°,4. Это объясняется следующим: если поднимается воздух, насыщенный парами, то при понижении температуры (вследствие расширения воздуха) пары сгущаются и часть их переходит в жидкое состояние, причем выделяется скрытая теплота парообразования.
При своем опускании воздух нагревается, потому что он все больше и больше сжимается, причем вследствие сжатия развивается теплота. При опускании как сухого, так и насыщенного водяными парами воздуха величина нагревания одинакова и равна 1° на каждые 100 м. Наблюдения над изменением температуры воздуха с высотой производятся на горах, на высоких постройках, кроме того, производились опыты с воздушными шарами, змеями и аэропланами, которые, снабжались метеорографами - приборами, записывающими автоматически не только температуру, но также давление, влажность воздуха и скорость ветра на разных высотах. В последние годы температуру на высоте изучают при помощи радиозондов, а также во время полетов на стратостатах.
Первоначально наблюдения производились на Эйфелевой башне, которая доступна действию более или менее свободного воздуха, причем термометры были установлены так, чтобы прямая лучистая солнечная энергия не действовала непосредственно на них. Они были установлены на высоте 2 м, 123 м. 197 м, 302 м. Оказывается, что днем в нижних слоях атмосферы постоянно теплее, чем в верхних слоях, причем летом, когда земля, а следовательно, и нижние слои атмосферы сильно нагреты, уменьшение температуры с поднятием на каждые 100 м более адиабатической величины, т. е. более 1°.
Летом циркуляция воздуха бывает особенно энергична и даже бывает заметна (на глаз); в жаркий летний день мы видим, что воздух как бы струится над сильно нагретыми поверхностями.
При таком состоянии воздух, как говорят, находится в неустойчивом равновесии, нагреваясь от подстилающей поверхности. Ночью, как показали наблюдения на Эйфелевой башне, внизу над поверхностью земли воздух холоднее, чем в верхних слоях. Такое распределение температуры носит название нижней инверсии температуры, в отличие от другой инверсии, сделавшейся известной сравнительно недавно и называемой верхней. Объясняется нижняя инверсия тем, что земля за ночь излучает очень много теплоты и поэтому сильно охлаждается. Это охлаждение передается нижним слоям воздуха, которые делаются более плотными и стекают вниз, стремясь заполнить углубления. Поэтому-то в гористых местностях в долинах зимой бывает очень холодно, а на склонах гор несколько теплее. Особенно резко инверсия выражается во время ясных зимних ночей.
Наблюдения на более значительной высоте (около 3-4 км), где температура земли не играет уже такой роли, показали, что инверсии там существуют значительно реже. Падение температуры с высотой, рассчитанное на 100 м (вертикальный температурный градиент), при подъеме в слоях атмосферы, превышающих 2-3 км, постепенно возрастает и на высотах 7-10 км достигает своего максимума. В этих высоких слоях инверсий нет, и температура обусловлена, главным образом, конвекционными восходящими и нисходящими токами. Восходящие токи дают для воздуха, не насыщенного водяными парами, падение температуры в 1° на 100 м поднятия; для воздуха, насыщенного водяными парами, падение температуры значительно меньше (см. выше). По этой причине на этих высотах температурные градиенты зимой, когда в атмосфере мало водяных паров, бывают больше, чем летом.
На еще больших высотах (выше 7-10 км) температурный градиент начинает быстро падать, затем падение температуры совсем прекращается, и даже наступает небольшое повышение температуры (верхняя инверсия). Таким образом, толщу атмосферы можно разделить на два слоя: нижний, в котором происходит понижение температуры с высотой, и затем верхний, где этого понижения нет, а, наоборот, наблюдается небольшое повышение. Первым - нижним - слоям дано название тропосферы, а вторым - верхним - стратосферы.
В среднем граница стратосферы находится на высоте 11 км. Наблюдения показали, что граница стратосферы к экватору поднимается, к полюсам опускается. Так, в полярных странах граница стратосферы находится на высоте 8-10 км, в средней Европе 11-12 км, тогда как под тропиками она на высоте 16-18 км. Вследствие этого под тропиками в высоких слоях температура на той же высоте ниже, чем над полюсами. Очевидно, чем выше находится граница стратосферы, тем больше будет понижение температуры с высотой. Самая низкая температура в верхних слоях тропосферы была найдена недалеко от экватора.
Наблюдения в Батавии, в нескольких градусах к югу от экватора, дали цифры около -87°, один раз на высоте 17 км даже -91°,9.
Это самая низкая температура, которая наблюдалась в атмосфере. Над Европой наиболее низкие температуры редко опускаются ниже-70°. Высота границы стратосферы изменяется и в течение года. Минимум ее высоты наблюдается зимой или ранней весной, максимума она постигает к концу лета.
Все сказанное относится к верхним слоям атмосферы, для толщи же атмосферы в 4-5 км можно принять, что понижение температуры с высотой, при поднятии на 100 м, в среднем за год равно 0,5-0°,6, и эту величину имеют в виду, когда приводят температуру к уровню моря. В горах и на плоскогорьях при изменении температуры с высотой имеют значение разные побочные обстоятельства, например, обращен ли склон горы к солнцу или находится в тени. Кроме того, там, где зимы бывают суровые, вершины часто имеют более высокую температуру, чем долины, и такая инверсия температуры существует не только ночью, а держится в продолжение всего холодного периода. Так, в Восточной Сибири зимой бывает затишье вследствие высокого барометрического давления, и поверхность земли покрыта снегом, который отражает много тепла; холодный воздух там вследствие большей плотности наполняет долины и впадины и задерживается в них, тогда как на вершинах хребтов в это время держится более высокая температура. Аналогичное явление наблюдалось и во многих альпийских долинах, защищенных горами от господствующих ветров. Но в общем и для гор можно принять понижение температуры на каждые 100 м поднятия равным 0°,5 в среднем за год, причем летом и весной падение температуры происходит быстрее, зимой и осенью медленнее.

Популярные статьи сайта из раздела «Сны и магия»

Если приснился плохой сон...

Если приснился какой-то плохой сон, то он запоминается почти всем и не выходит из головы длительное время. Часто человека пугает даже не столько само содержимое сновидения, а его последствия, ведь большинство из нас верит, что сны мы видим совсем не напрасно. Как выяснили ученые, плохой сон чаще всего снится человеку уже под самое утро...

В августе месяце мы отдыхали на Кавказе у моей однокурсницы Нателлы. Нас угощали вкуснейшим шашлыком и домашним вином. Но больше всего мне запомнилась экскурсия в горы. Внизу было очень тепло, но вверху - просто холодно. Я задумалась о том, почему с высотой температура воздуха понижается. При подъеме на Эльбрус это было очень заметно.

Изменение температуры воздуха с высотой

Пока мы поднимались по горному маршруту, проводник Зураб объяснял нам причины понижения температуры воздуха с высотой.

Воздух в атмосфере нашей планеты находится в поле тяготения. Поэтому его молекулы постоянно перемешиваются. При движении вверх молекулы расширяются, и температура падает, при движении вниз, наоборот, повышается.

Это видно, когда самолет поднимается на высоту, и в салоне сразу становится холодно. Я до сих пор помню свой первый перелет в Крым. Запомнила я его именно благодаря этой разнице температуры внизу и на высоте. Мне казалось, что мы просто висим в холодном воздухе, а внизу карта местности.


Температура воздуха зависит от температуры земной поверхности. Воздух прогревается от нагретой солнцем Земли.

Почему с высотой понижается температура в горах

О том, что в горах холодно и тяжело дышать, знают все. Я это испытала на себе в походе на Эльбрус.

Такие явления имеют несколько причин.

  1. В горах воздух разрежен, поэтому плохо прогревается.
  2. Лучи солнца попадают на наклонную поверхность горы и прогревают ее гораздо меньше, чем землю на равнине.
  3. Белые шапки снега на горных вершинах отражают лучи солнца, и это тоже понижает температуру воздуха.


Куртки нам очень пригодились. В горах, несмотря на август месяц, было холодно. У подножья горы раскинулись зеленые луга, а вверху лежал снег. Местные пастухи и овцы давно приспособились к жизни в горах. Их не смущает холодная температура, а их ловкости передвижения по горным тропинкам можно только позавидовать.


Так наша поездка на Кавказ оказалась еще и познавательной. Мы прекрасно отдохнули и на личном опыте узнали, как с высотой температура воздуха понижается.

Чтобы несколько упростить рассмотрение вопроса, атмосферу подразделяют на три главных слоя. Расслоение атмосферы - в первую очередь результат неодинакового изменения температуры воздуха с высотой. Нижние два слоя сравнительно однородны по составу. По этой причине обычно говорят, что они образуют гомосферу.

Тропосфера. Нижний слой атмосферы называется тропосферой. Сам этот термин означает „сфера поворота" и связан с характеристиками турбулентности данного слоя. Все перемены погоды и климата являются результатом физических процессов, происходящих именно в этом слое. В XVIII веке, поскольку изучение атмосферы ограничивалось только этим слоем, считалось, будто обнаруженное в нем уменьшение температуры воздуха с высотой присуще и всей остальной атмосфере.

Различные превращения энергии происходят в первую очередь именно в тропосфере. Вследствие непрерывного соприкосновения воздуха с земной поверхностью, а также поступления в него энергии из космоса, он приходит в движение. Верхняя граница этого слоя располагается там, где уменьшение температуры с высотой сменяется ее возрастанием,- примерно на высоте 15-16 км над экватором и 7-8 км над полюсами. Как и сама Земля, под влиянием вращения нашей планеты тоже несколько сплющена над полюсами и разбухает над экватором. Однако этот эффект выражен в атмосфере значительно сильнее, чем в твердой оболочке Земли.

В направлении от поверхности Земли к верхней границе тропосферы температура воздуха понижается. Над экватором минимальная температура воздуха составляет около -62°С, а над полюсами около -45°С. Однако в зависимости от пункта измерений температура может быть несколько иной. Так, над островом Ява на верхней границе тропосферы температура воздуха падает до рекордно низкого значения -95°С.

Верхняя граница тропосферы называется тропопаузой. В более 75% массы атмосферы лежит ниже тропопаузы. В тропиках же в пределах тропосферы находится около 90% массы атмосферы.

Тропопауза была открыта в 1899 г., когда в вертикальном профиле температуры на некоторой высоте был обнаружен ее минимум, а затем температура незначительно повышалась. Начало этого повышения означает переход к следующему слою атмосферы - к стратосфере.

Стратосфера. Термин стратосфера означает „сфера слоя" и отражает прежнее представление о единственности слоя, лежащего выше тропосферы. Стратосфера простирается до высоты около 50 км над земной поверхностью. Особенностью ее является, в частности, резкое повышение температуры воздуха по сравнению с исключительно низкими значениями ее в тропопаузе. В температура в стратосфере повышается примерно до -40°С. Это повышение температуры объясняют реакцией образования озона - одной из главных химических реакций, происходящих в атмосфере.

Озон представляет собой особую форму кислорода. В отличие от обычной двухатомной молекулы кислорода (О2). озон состоит из трехатомных его молекул (Оз). Появляется он в результате взаимодействия обычного кислорода с , поступающей в верхние слои атмосферы.

Основная масса озона сосредоточена на высотах примерно 25 км, но в целом слой озона представляет собой сильно растянутую по высоте оболочку, охватывающую почти всю стратосферу. В озоносфере ультрафиолетовые лучи чаще и сильнее всего взаимодействуют с атмосферным кислородом. вызывает распад обычных двухатомных молекул кислорода на отдельные атомы. В свою очередь атомы кислорода часто снова присоединяются к двухатомным молекулам и образуют молекулы озона. Таким же образом отдельные атомы кислорода соединяются в двухатомные молекулы. Интенсивность образования озона оказывается достаточной для того, чтобы в стратосфере существовал слой высокой его концентрации.

Взаимодействие кислорода с ультрафиолетовыми лучами - один из благоприятных процессов в земной атмосфере, способствующих поддержанию жизни на Земле. Поглощение озоном этой энергии препятствует излишнему поступлению ее на земную поверхность, где создается именно такой уровень энергии, который пригоден для существования земных форм жизни. Возможно, в прошлом на Землю поступало большее количество энергии, чем теперь, что и оказывало влияние на возникновение первичных форм жизни на нашей планете. Но современные живые организмы не выдержали бы поступления от Солнца более значительного количества ультрафиолетовой радиации.

Озоносфера поглощает часть , проходщей через атмосферу. В результате этого в озоносфере устанавливается вертикальный градиент температуры воздуха примерно 0,62°С на 100 м, т. е, температура повышается с высотой вплоть до верхнего предела стратосферы - стратопаузы (50 км).

На высотах от 50 до 80 км располагается слой атмосферы, называемый мезосферой. Слово „мезосфера" означает „промежуточная сфера", здесь температура воздуха продолжает понижаться с высотой.

Выше мезосферы, в слое, называемом термосферой, температура снова растет с высотой примерно до 1000°С, а затем очень быстро падает до -96°С. Однако падает не беспредельно, потом температура снова увеличивается.

Расчленение атмосферы на отдельные слои довольно легко заметить по особенностям изменения температуры с высотой в каждом слое.

В отличие от упомянутых ранее слоев, ионосфера выделена не. по температурному признаку. Главная особенность ионосферы - высокая степень ионизации атмосферных газов. Эта ионизация вызвана поглощением солнечной энергии атомами различных газов. Ультрафиолетовые и другие солнечные лучи, несущие кванты высокой энергии, поступая в атмосферу, ионизируют атомы азота и кислорода - от атомов отрываются электроны, находящиеся на внешних орбитах. Теряя электроны, атом приобретает положительный заряд. Если же к атому присоединяется электрон, то атом заряжается отрицательно. Таким образом, ионосфера является областью, имеющей электрическую природу, благодаря которой становятся возможными многие виды радиосвязи.

Ионосферу делят на несколько слоев, обозначая их буквами D, Е, F1 и F2 Эти слои имеют и особые названия. Разделение на слои вызвано несколькими причинами, среди которых самая важная-неодинаковое влияние слоев на прохождение радиоволн. Самый нижний слой, D, в основном поглощает радиоволны и тем самым препятствует дальнейшему их распространению.

Лучше всего изученный слой Е расположен на высоте примерно 100 км над земной поверхностью. Его называют также слоем Кеннелли - Хевисайда по именам американского и английского ученых, которые одновременно и независимо друг от друга обнаружили его. Слой Е, подобно гигантскому зеркалу, отражает радиоволны. Благодаря этому слою длинные радиоволны проходят более далекие расстояния, чем следовало бы ожидать, если бы они распространялись только прямолинейно, не отражаясь от слоя Е

Аналогичные свойства имеет и слой F. Его называют также слоем Эпплтона. Вместе со слоем Кеннелли-Хевисайда он отражаем радиоволны к наземным радиостанциями Такое отражение может происходить под различными углами. Слой Эпплтона расположен на высоте около 240 км.

Самая внешняя область атмосферы часто называется экзосферой.

Этот термин указывает на существование окраины космоса вблизи Земли. Определить, где именно кончается и начинается космос, трудно, поскольку с высотой плотность атмосферных газов уменьшается постепенно и сама плавно превращается почти в вакуум, в котором встречаются лишь отдельные молекулы. С удалением от земной поверхности атмосферные газы испытывают все меньшее притяжение планеты и с некоторой высоты стремятся покинуть поле земного тяготения. Уже на высоте примерно 320 км плотность атмосферы настолько мала, что молекулы, не сталкиваясь друг с другом, могут проходить путь более 1 км. Самая внешняя часть атмосферы служит как бы ее верхней границей, которая располагается на высотах от 480 до 960 км.