Чему равен диаметр описанной окружности. Описанная окружность. Подробная теория с примерами

16.05.2019 Обучение

В этой части мы обсудим окружность, описанную вокруг (часто говорят «около») треугольника. Прежде всего дадим определение.

1. Существование и центр описанной окружности

Тут возникает вопрос: а для всякого ли треугольника существует такая окружность? Вот оказывается, что да, для всякого. И более того, мы сейчас сформулируем теорему, которая ещё и отвечает на вопрос, где же находится центр описанной окружности.

Смотри, вот так:

Давай наберёмся мужества и докажем эту теорему. Если ты читал уже тему « » разбирался в том, почему же три биссектрисы пересекаются в одной точке, то тебе будет легче, но и если не читал – не переживай: сейчас во всём разберёмся.

Доказательство будем проводить, используя понятие геометрического места точек (ГМТ).

Ну вот, например, является ли множество мячей – «геометрическим местом» круглых предметов? Нет, конечно, потому что бывают круглые …арбузы. А является ли множество людей, «геометрическим местом», умеющих говорить? Тоже нет, потому что есть младенцы, которые говорить не умеют. В жизни вообще сложно найти пример настоящего «геометрического места точек». В геометрии проще. Вот, к примеру, как раз то, что нам нужно:

Тут множество – это серединный перпендикуляр, а свойство « » - это «быть равноудаленной (точкой) от концов отрезка».

Проверим? Итак, нужно удостовериться в двух вещах:

Соединим с и с.Тогда линия является медианой и высотой в. Значит, – равнобедренный, – убедились, что любая точка, лежащая на серединном перпендикуляре, одинаково удалена от точек и.

Возьмём – середину и соединим и. Получилась медиана. Но – равнобедренный по условию не только медиана, но и высота, то есть – серединный перпендикуляр. Значит, точка - точно лежит на серединном перпендикуляре.

Всё! Полностью проверили тот факт, что серединный перпендикуляр к отрезку является геометрическим местом точек, равноудаленных от концов отрезка.

Это все хорошо, но не забыли ли мы об описанной окружности? Вовсе нет, мы как раз подготовили себе «плацдарм для нападения».

Рассмотрим треугольник. Проведём два серединных перпендикуляра и, скажем, к отрезкам и. Они пересекутся в какой-то точке, которую мы назовем.

А теперь, внимание!

Точка лежит на серединном перпендикуляре;
точка лежит на серединном перпендикуляре.
И значит, и.

Отсюда следует сразу несколько вещей:

Во – первых , точка обязана лежать на третьем серединном перпендикуляре, к отрезку.

То есть серединный перпендикуляр тоже обязан пройти через точку, и все три серединных перпендикуляра пересеклись в одной точке.

Во – вторых : если мы проведём окружность с центром в точке и радиусом, то эта окружность также пройдёт и через точку, и через точку, то есть будет описанной окружностью. Значит, уже есть, что пересечение трёх серединных перпендикуляров – центр описанной окружности для любого треугольника.

И последнее: о единственности. Ясно (почти), что точку можно получить единственным образом, поэтому и окружность – единственная. Ну, а «почти» - оставим на твоё размышление. Вот и доказали теорему. Можно кричать «Ура!».

А если в задаче стоит вопрос «найдите радиус описанной окружности»? Или наоборот, радиус дан, а требуется найти что – то другое? Есть ли формула, связывающая радиус описанной окружность с другими элементами треугольника?

Определение

Окружность \(S\) описана около многоугольника \(P\) , если все вершины многоугольника \(P\) лежат на окружности \(S\) .

В этом случае многоугольник \(P\) называется вписанным в окружность.

Определение

Серединный перпендикуляр к отрезку – это прямая, проходящая через середину данного отрезка перпендикулярно ему.

Теорема

Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка.

Доказательство

Рассмотрим отрезок \(AB\) и серединный перпендикуляр \(a\) к нему. Докажем, что для любой точки \(X\in a\) выполнено: \(AX=BX\) .

Рассмотрим \(\triangle AXB\) : отрезок \(XO\) является медианой и высотой, следовательно, \(\triangle AXB\) – равнобедренный, следовательно, \(AX=BX\) .

Теорема

Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.

Доказательство

Рассмотрим \(\triangle ABC\) . Проведем серединные перпендикуляры к сторонам \(AB\) и \(AC\) . Они пересекутся в точке \(O\) .



По предыдущей теореме для серединного перпендикуляра \(C_1O\) выполнено: \(AO=BO\) , а для \(B_1O\) - \(AO=CO\) . Следовательно, \(BO=CO\) . Значит, \(\triangle BOC\) – равнобедренный, следовательно, высота \(OA_1\) , проведенная к основанию \(BC\) , будет также и медианой. Значит, \(OA_1\) – серединный перпендикуляр к отрезку \(BC\) .

Таким образом, все три серединных перпендикуляра пересеклись в одной точке \(O\) .

Следствие

Если точка равноудалена от концов отрезка, то она лежит на его серединном перпендикуляре.

Теорема

Около любого треугольника можно описать единственную окружность, причём центр описанной окружности есть точка пересечения серединных перпендикуляров к сторонам треугольника.

Доказательство

Из доказанной выше теоремы следует, что \(AO=BO=CO\) . Значит, все вершины треугольника равноудалены от точки \(O\) , следовательно, они лежат на одной окружности.


Такая окружность единственна. Допустим, что около \(\triangle ABC\) можно описать еще одну окружность. Тогда ее центр должен совпасть с точкой \(O\) (т.к. это единственная точка, равноудаленная от вершин треугольника), а радиус должен быть равен расстоянию от центра до какой-то из вершин, т.е. \(OA\) . Т.к. у этих окружностей совпадают и центр, и радиус, то и эти окружности совпадают.

Теорема о площади вписанного треугольника

Если \(a, b, c\) – стороны треугольника, а \(R\) – радиус описанной около него окружности, то площадь треугольника \

Доказательство*
С доказательством данной теоремы рекомендуется ознакомиться после изучения темы “Теорема синусов”.

Обозначим угол между сторонами \(a\) и \(c\) за \(\alpha\) . Тогда \(S_{\triangle}=\frac12 ac\cdot \sin \alpha\) .

По теореме синусов \(\dfrac b{\sin\alpha}=2R\) , откуда \(\sin \alpha=\dfrac b{2R}\) . Следовательно, \(S_{\triangle}=\dfrac{abc}{4R}\) .

Теорема

Около четырёхугольника можно описать окружность тогда и только тогда, когда суммы его противоположных углов равны \(180^\circ\) .

Доказательство

Необходимость.


Если около четырёхугольника \(ABCD\) можно описать окружность, то \(\buildrel\smile\over{ABC} + \buildrel\smile\over{ADC} = 360^\circ\) , откуда \(\angle ABC + \angle ADC = \frac{1}{2}\buildrel\smile\over{ABC} + \frac{1}{2}\buildrel\smile\over{ADC} = \frac{1}{2}(\buildrel\smile\over{ABC} + \buildrel\smile\over{ADC}) = 180^\circ\) . Для углов \(BCD\) и \(BAD\) аналогично.

Достаточность.


Опишем окружность около треугольника \(ABC\) . Пусть центр этой окружности – точка \(O\) . На прямой, проходящей через точки \(O\) и \(D\) отметим точку \(D"\) пересечения этой прямой и окружности. Предположим, что точки \(D\) и \(D"\) не совпали, тогда рассмотрим четырёхугольник \(CD"AD\) .

Углы \(CD"A\) и \(CDA\) дополняют угол \(ABC\) до \(180^\circ\) (\(\angle CDA\) дополняет по условию, а \(\angle CD"A\) по доказанному выше), следовательно, они равны, но тогда сумма углов четырёхугольника \(AD"CD\) больше \(360^\circ\) , чего быть не может (сумма углов это четырёхугольника есть сумма углов двух треугольников), следовательно, точки \(D\) и \(D"\) совпадают.

Замечание. На рисунке точка \(D\) лежит вне круга, ограниченного окружностью, описанной около \(\triangle ABC\) , однако, в случае, когда \(D\) лежит внутри, доказательство также остаётся верным.

Теорема

Около выпуклого четырехугольника \(ABCD\) можно описать окружность тогда и только тогда, когда \(\angle ABD=\angle ACD\) .


Доказательство

Необходимость. Если около \(ABCD\) описана окружность, то углы \(\angle ABD\) и \(\angle ACD\) – вписанные и опираются на одну дугу \(\buildrel\smile\over{AD}\) , следовательно, они равны.

Достаточность. Пусть \(\angle ABD=\angle ACD=\alpha\) . Докажем, что около \(ABCD\) можно описать окружность.


Опишем окружность около \(\triangle ABD\) . Пусть прямая \(CD\) пересекла эту окружность в точке \(C"\) . Тогда \(\angle ABD=\angle AC"D \Rightarrow \angle AC"D=\angle ACD\) .

Следовательно, \(\angle CAD=\angle C"AD=180^\circ-\angle ADC-\angle AC"D\) , то есть \(\triangle AC"D=\triangle ACD\) по общей стороне \(AD\) и двум прилежащим углам (\(\angle C"AD=\angle CAD\) , \(\angle ADC"=\angle ADC\) – общий). Значит, \(DC"=DC\) , то есть точки \(C"\) и \(C\) совпадают.

Теоремы

1. Если около параллелограмма описана окружность, то он – прямоугольник (рис. 1).

2. Если около ромба описана окружность, то он – квадрат (рис. 2).

3. Если около трапеции описана окружность, то она равнобедренная (рис. 3).



Верны и обратные утверждения: около прямоугольника, ромба и равнобедренной трапеции можно описать окружность, и притом только одну.

Доказательство

1) Пусть около параллелограмма \(ABCD\) описана окружность. Тогда суммы его противоположных углов равны \(180^\circ: \quad \angle A+\angle C=180^\circ\) . Но в параллелограмме противоположные углы равны, т.к. \(\angle A=\angle C\) . Следовательно, \(\angle A=\angle C=90^\circ\) . Значит, по определению \(ABCD\) – прямоугольник.

2) Пусть около ромба \(MNKP\) описана окружность. Аналогично предыдущему пункту (т.к. ромб является параллелограммом) доказывается, что \(MNKP\) – прямоугольник. Но все стороны этого прямоугольника равны (т.к. он ромб), значит \(MNKP\) – квадрат.

Обратное утверждение очевидно.

3) Пусть около трапеции \(QWER\) описана окружность. Тогда \(\angle Q+\angle E=180^\circ\) . Но из определения трапеции следует, что \(\angle Q+\angle W=180^\circ\) . Следовательно, \(\angle W=\angle E\) . Т.к. углы при основании \(WE\) трапеции равны, то она равнобедренная.

Обратное утверждение очевидно.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

>>Геометрия: Окружность, описанная около треугольника. Полные уроки

ТЕМА УРОКА: Окружность, описанная около треугольника.

Цели урока:

  • Углубить знания по теме «Описанная окружности в треугольниках»


Задачи урока:

  • Систематизировать знания по этой теме
  • Подготовиться к решению задач повышенной сложности.

План урока:

  1. Введение.
  2. Теоретическая часть.
  3. Для треугольника.
  4. Практическая часть.

Введение.

Тема «Вписанные и описанные окружности в треугольниках» является одной из самых сложных в курсе геометрии. На уроках ей уделяется очень мало времени.

Геометрические задачи этой темы включаются во вторую часть экзаменационной работы ЕГЭ за курс средней школы.
Для успешного выполнения этих заданий необходимы твердые знания основных геометрических фактов и некоторый опыт в решении геометрических задач.

Теоретическая часть.

Описанная окружность многоугольника - окружность, содержащая все вершины многоугольника. Центром является точка (принято обозначать O) пересечения серединных перпендикуляров к сторонам многоугольника.

Свойства.

Центр описанной окружности выпуклого n-угольника лежит в точке пересечения серединных перпендикуляров к его сторонам. Как следствие: если рядом с n-угольником описана окружность, то все серединные перпендикуляры к его сторонам пересекаются в одной точке (центре окружности).
Вокруг любого правильного многоугольника можно описать окружность.

Для треугольника.

Окружность называется описанной около треугольника, если она проходит через все его вершины.

Вокруг любого треугольника можно описать окружность, притом только одну . Её центром будет являться точка пересечения серединных перпендикуляров.

У остроугольного треугольника центр описанной окружности лежит внутри , у тупоугольного - вне треугольника , у прямоугольного - на середине гипотенузы .

Радиус описанной окружности может быть найден по формулам:

Где:
a,b,c - стороны треугольника,
α - угол, лежащий против стороны a,
S - площадь треугольника.


Доказать:

т.О - точка пересечения серединных перпендикуляров к сторонам ΔABC

Доказательство:

  1. ΔAОC - равнобедренный, т.к. ОА=ОС (как радиусы)
  2. ΔAОC - равнобедренный, перпендикуляр OD - медиана и высота, т.е. т.О лежит на серединном перпендикуляре к стороне АС
  3. Аналогично доказывается, что т.О лежит на серединных перпендикулярах к сторонам АВ и ВС

Что и требовалось доказать.

Замечание.

Прямую, проходящую через середину отрезка перпендикулярно к нему, часто называют серединным перпендикуляром. В связи с этим иногда говорят, что центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к сторонам треугольника.

Предмети > Математика > Математика 7 класс