Решение дробных уравнений со степенями. Показательные уравнения

21.09.2019 Техника

Показательными называются уравнения, в которых неизвестное содержится в показателе степени. Простейшее показательное уравнение имеет вид: а х = а b , где а> 0, а 1, х - неизвестное.

Основные свойства степеней, при помощи которых преобразуются показательные уравнения: а>0, b>0.

При решении показательных уравнений пользуются также следующими свойствами показательной функции: y = a x , a > 0, a1:

Для представления числа в виде степени используют основное логарифмическое тождество: b = , a > 0, a1, b > 0.

Задачи и тесты по теме "Показательные уравнения"

  • Показательные уравнения

    Уроков: 4 Заданий: 21 Тестов: 1

  • Показательные уравнения - Важные темы для повторения ЕГЭ по математике

    Заданий: 14

  • Системы показательных и логарифмических уравнений - Показательная и логарифмическая функции 11 класс

    Уроков: 1 Заданий: 15 Тестов: 1

  • §2.1. Решение показательных уравнений

    Уроков: 1 Заданий: 27

  • §7 Показательные и логарифмические уравнения и неравенства - Раздел 5. Показательная и логарифмическая функции 10 класс

    Уроков: 1 Заданий: 17

Для успешного решения показательных уравнений Вы должны знать основные свойства степеней, свойства показательной функции, основное логарифмическое тождество.

При решении показательных уравнений используют два основных метода:

  1. переход от уравнения a f(x) = a g(x) к уравнению f(x) = g(x);
  2. введение новых прямых.

Примеры.

1. Уравнения, сводящиеся к простейшим. Решаются приведением обеих частей уравнения к степени с одинаковым основанием.

3 x = 9 x – 2 .

Решение:

3 x = (3 2) x – 2 ;
3 x = 3 2x – 4 ;
x = 2x –4;
x = 4.

Ответ: 4.

2. Уравнения, решаемые с помощью вынесения за скобки общего множителя.

Решение:

3 x – 3 x – 2 = 24
3 x – 2 (3 2 – 1) = 24
3 x – 2 × 8 = 24
3 x – 2 = 3
x – 2 = 1
x = 3.

Ответ: 3.

3. Уравнения, решаемые с помощью замены переменной.

Решение:

2 2x + 2 x – 12 = 0
Обозначаем 2 x = у.
y 2 + y – 12 = 0
y 1 = - 4; y 2 = 3.
a) 2 x = - 4.Уравнение не имеет решений, т.к. 2 х > 0.
б) 2 x = 3; 2 x = 2 log 2 3 ; x = log 2 3.

Ответ: log 2 3.

4. Уравнения, содержащие степени с двумя различными (не сводящимися друг к другу) основаниями.

3 × 2 х + 1 - 2 × 5 х – 2 = 5 х + 2 х – 2 .

3× 2 х + 1 – 2 х – 2 = 5 х – 2 × 5 х – 2
2 х – 2 ×23 = 5 х – 2
×23
2 х – 2 = 5 х – 2
(5/2) х– 2 = 1
х – 2 = 0
х = 2.

Ответ: 2.

5. Уравнения, однородные относительно a x и b x .

Общий вид: .

9 x + 4 x = 2,5 × 6 x .

Решение:

3 2x – 2,5 × 2 x × 3 x +2 2x = 0 |: 2 2x > 0
(3/2) 2x – 2,5 × (3/2) x + 1 = 0.
Обозначим (3/2) x = y.
y 2 – 2,5y + 1 = 0,
y 1 = 2; y 2 = ½.

Ответ: log 3/2 2; - log 3/2 2.

Лекция: «Методы решения показательных уравнений».

1 . Показательные уравнения.

Уравнения, содержащие неизвестные в показателе степени, называются показательными уравнениями. Простейшим из них является уравнение аx = b, где а > 0, а ≠ 1.

1) При b < 0 и b = 0 это уравнение, согласно свойству 1 показательной функции, не имеет решения.

2) При b > 0 используя монотонность функции и теорему о корне, уравнение имеет единственный корень. Для того, чтобы его найти, надо b представить в виде b = aс, аx = bс ó x = c или x = logab.

Показательные уравнения путем алгебраических преобразований приводят к стандартным уравнения, которые решаются, используя следующие методы:

1) метод приведения к одному основанию ;

2) метод оценки;

3) графический метод;

4) метод введения новых переменных;

5) метод разложения на множители;

6) показательно – степенные уравнения;

7) показательные с параметром.

2 . Метод приведения к одному основанию.

Способ основан на следующем свойстве степеней: если равны две степени и равны их основания, то равны и их показатели, т. е. уравнение надо попытаться свести к виду

Примеры. Решить уравнение:

1 . 3x = 81;

Представим правую часть уравнения в виде 81 = 34 и запишем уравнение, равносильное исходному 3 x = 34; x = 4. Ответ: 4.

2. https://pandia.ru/text/80/142/images/image004_8.png" width="52" height="49">и перейдем к уравнению для показателей степеней 3x+1 = 3 – 5x; 8x = 4; x = 0,5. Ответ: 0,5.

3. https://pandia.ru/text/80/142/images/image006_8.png" width="105" height="47">

Заметим, что числа 0,2 , 0,04 , √5 и 25 представляют собой степени числа 5. Воспользуемся этим и преобразуем исходное уравнение следующим образом:

, откуда 5-x-1 = 5-2x-2 ó - x – 1 = - 2x – 2, из которого находим решение x = -1. Ответ: -1.

5. 3x = 5. По определению логарифма x = log35. Ответ: log35.

6. 62x+4 = 33x. 2x+8.

Перепишем уравнение в виде 32x+4.22x+4 = 32x.2x+8, т. е..png" width="181" height="49 src="> Отсюда x – 4 =0, x = 4. Ответ: 4.

7 . 2∙3x+1 - 6∙3x-2 - 3x = 9. Используя свойства степеней, запишем уравнение в виде 6∙3x - 2∙3x – 3x = 9 далее 3∙3x = 9, 3x+1 = 32 , т. е. x+1 = 2, x =1. Ответ: 1.

Банк задач №1.

Решить уравнение:

Тест №1.

1) 0 2) 4 3) -2 4) -4

А2 32x-8 = √3.

1)17/4 2) 17 3) 13/2 4) -17/4

А3

1) 3;1 2) -3;-1 3) 0;2 4) корней нет

1) 7;1 2) корней нет 3) -7;1 4) -1;-7

А5

1) 0;2; 2) 0;2;3 3) 0 4) -2;-3;0

А6

1) -1 2) 0 3) 2 4) 1

Тест №2

А1

1) 3 2) -1;3 3) -1;-3 4) 3;-1

А2

1) 14/3 2) -14/3 3) -17 4) 11

А3

1) 2;-1 2) корней нет 3) 0 4) -2;1

А4

1) -4 2) 2 3) -2 4) -4;2

А5

1) 3 2) -3;1 3) -1 4) -1;3

3 Метод оценки.

Теорема о корне : если функция f(x) возрастает (убывает) на промежутке I, число а –любое значение принимаемое f на этом промежутке, тогда уравнение f(x) = а имеет единственный корень на промежутке I.

При решении уравнений методом оценки используется эта теорема и свойства монотонности функции.

Примеры. Решить уравнения: 1. 4x = 5 – x.

Решение. Перепишем уравнение в виде 4x +x = 5.

1. если x = 1, то 41+1 = 5 , 5 = 5 верно, значит 1 – корень уравнения.

Функция f(x) = 4x – возрастает на R, и g(x) = x –возрастает на R => h(x)= f(x)+g(x) возрастает на R, как сумма возрастающих функций, значит x = 1 – единственный корень уравнения 4x = 5 – x. Ответ: 1.

2.

Решение. Перепишем уравнение в виде .

1. если x = -1, то , 3 = 3-верно, значит x = -1 – корень уравнения.

2. докажем, что он единственный.

3. Функция f(x) = - убывает на R, и g(x) = - x – убывает на R=> h(x) = f(x)+g(x) – убывает на R, как сумма убывающих функций. Значит по теореме о корне, x = -1 – единственный корень уравнения. Ответ: -1.

Банк задач №2. Решить уравнение

а) 4x + 1 =6 – x;

б)

в) 2x – 2 =1 – x;

4. Метод введения новых переменных.

Метод описан в п. 2.1. Введение новой переменной (подстановка) обычно производится после преобразований (упрощения) членов уравнения. Рассмотрим примеры.

Примеры. Р ешить уравнение: 1. .

Перепишем уравнение иначе: https://pandia.ru/text/80/142/images/image030_0.png" width="128" height="48 src="> т. е..png" width="210" height="45">

Решение. Перепишем уравнение иначе:

Обозначим https://pandia.ru/text/80/142/images/image035_0.png" width="245" height="57"> - не подходит.

t = 4 => https://pandia.ru/text/80/142/images/image037_0.png" width="268" height="51"> - иррациональное уравнение. Отмечаем, что

Решением уравнения является x = 2,5 ≤ 4, значит 2,5 – корень уравнения. Ответ: 2,5.

Решение. Перепишем уравнение в виде и разделим его обе части на 56x+6 ≠ 0. Получим уравнение

2x2-6x-7 = 2x2-6x-8 +1 = 2(x2-3x-4)+1, т..png" width="118" height="56">

Корни квадратного уравнения – t1 = 1 и t2 <0, т. е..png" width="200" height="24">.

Решение. Перепишем уравнение в виде

и заметим, что оно является однородным уравнением второй степени.

Разделим уравнение на 42x, получим

Заменим https://pandia.ru/text/80/142/images/image049_0.png" width="16" height="41 src="> .

Ответ: 0; 0,5.

Банк задач № 3. Решить уравнение

б)

г)

Тест № 3 с выбором ответа. Минимальный уровень.

А1

1) -0,2;2 2) log52 3) –log52 4) 2

А2 0,52x – 3 0,5x +2 = 0.

1) 2;1 2) -1;0 3) корней нет 4) 0

1) 0 2) 1; -1/3 3) 1 4) 5

А4 52x-5x - 600 = 0.

1) -24;25 2) -24,5; 25,5 3) 25 4) 2

1) корней нет 2) 2;4 3) 3 4) -1;2

Тест № 4 с выбором ответа. Общий уровень.

А1

1) 2;1 2) ½;0 3)2;0 4) 0

А2 2x – (0,5)2x – (0,5)x + 1 = 0

1) -1;1 2) 0 3) -1;0;1 4) 1

1) 64 2) -14 3) 3 4) 8

1)-1 2) 1 3) -1;1 4) 0

А5

1) 0 2) 1 3) 0;1 4) корней нет

5. Метод разложения на множители.

1. Решите уравнение: 5x+1 - 5x-1 = 24.

Решение..png" width="169" height="69"> , откуда

2. 6x + 6x+1 = 2x + 2x+1 + 2x+2.

Решение. Вынесем за скобки в левой части уравнения 6x, а в правой части – 2x. Получим уравнение 6x(1+6) = 2x(1+2+4) ó 6x = 2x.

Так как 2x >0 при всех x, можно обе части этого уравнения разделить на 2x, не опасаясь при этом потери решений. Получим 3x = 1ó x = 0.

3.

Решение. Решим уравнение методом разложения на множители.

Выделим квадрат двучлена

4. https://pandia.ru/text/80/142/images/image067_0.png" width="500" height="181">

x = -2 – корень уравнения.

Уравнение x + 1 = 0 " style="border-collapse:collapse;border:none">

А1 5x-1 +5x -5x+1 =-19.

1) 1 2) 95/4 3) 0 4) -1

А2 3x+1 +3x-1 =270.

1) 2 2) -4 3) 0 4) 4

А3 32x + 32x+1 -108 = 0. x=1,5

1) 0,2 2) 1,5 3) -1,5 4) 3

1) 1 2) -3 3) -1 4) 0

А5 2x -2x-4 = 15. x=4

1) -4 2) 4 3) -4;4 4) 2

Тест № 6 Общий уровень.

А1 (22x-1)(24x+22x+1)=7.

1) ½ 2) 2 3) -1;3 4) 0,2

А2

1) 2,5 2) 3;4 3) log43/2 4) 0

А3 2x-1-3x=3x-1-2x+2.

1) 2 2) -1 3) 3 4) -3

А4

1) 1,5 2) 3 3) 1 4) -4

А5

1) 2 2) -2 3) 5 4) 0

6. Показательно – степенные уравнения.

К показательным уравнениям примыкают так называемые показательно – степенные уравнения, т. е. уравнения вида (f(x))g(x) = (f(x))h(x).

Если известно, что f(x)>0 и f(x) ≠ 1, то уравнение, как и показательное, решается приравниванием показателей g(x) = f(x).

Если условием не исключается возможность f(x)=0 и f(x)=1, то приходится рассматривать и эти случаи при решении показательно – степенного уравнения.

1..png" width="182" height="116 src=">

2.

Решение. x2 +2x-8 – имеет смысл при любых x, т. к. многочлен, значит уравнение равносильно совокупности

https://pandia.ru/text/80/142/images/image078_0.png" width="137" height="35">

б)

7. Показательные уравнения с параметрами.

1. При каких значениях параметра p уравнение 4 (5 – 3)2 +4p2–3p = 0 (1) имеет единственное решение?

Решение. Введем замену 2x = t, t > 0, тогда уравнение (1) примет вид t2 – (5p – 3)t + 4p2 – 3p = 0. (2)

Дискриминант уравнения (2) D = (5p – 3)2 – 4(4p2 – 3p) = 9(p – 1)2.

Уравнение (1) имеет единственное решение, если уравнение (2) имеет один положительный корень. Это возможно в следующих случаях.

1. Если D = 0, то есть p = 1, тогда уравнение (2) примет вид t2 – 2t + 1 = 0, отсюда t = 1, следовательно, уравнение (1) имеет единственное решение x = 0.

2. Если p1, то 9(p – 1)2 > 0, тогда уравнение (2) имеет два различных корня t1 = p, t2 = 4p – 3. Условию задачи удовлетворяет совокупность систем

Подставляя t1 и t2 в системы, имеем

https://pandia.ru/text/80/142/images/image084_0.png" alt="no35_11" width="375" height="54"> в зависимости от параметра a?

Решение. Пусть тогда уравнение (3) примет вид t2 – 6t – a = 0. (4)

Найдем значения параметра a, при которых хотя бы один корень уравнения (4) удовлетворяет условию t > 0.

Введем функцию f(t) = t2 – 6t – a. Возможны следующие случаи.

https://pandia.ru/text/80/142/images/image087.png" alt="http://1september.ru/ru/mat/2002/35/no35_14.gif" align="left" width="215" height="73 src=">где t0 - абсцисса вершины параболы и D - дискриминант квадратного трехчлена f(t);

https://pandia.ru/text/80/142/images/image089.png" alt="http://1september.ru/ru/mat/2002/35/no35_16.gif" align="left" width="60" height="51 src=">

Случай 2. Уравнение (4) имеет единственное положительное решение, если

D = 0, если a = – 9, тогда уравнение (4) примет вид (t – 3)2 = 0, t = 3, x = – 1.

Случай 3. Уравнение (4) имеет два корня, но один из них не удовлетворяет неравенству t > 0. Это возможно, если

https://pandia.ru/text/80/142/images/image092.png" alt="no35_17" width="267" height="63">

Таким образом, при a 0 уравнение (4) имеет единственный положительный корень . Тогда уравнение (3) имеет единственное решение

При a < – 9 уравнение (3) корней не имеет.

если a < – 9, то корней нет; если – 9 < a < 0, то
если a = – 9, то x = – 1;

если a  0, то

Сравним способы решения уравнений (1) и (3). Отметим, что при решении уравнение (1) было сведено к квадратному уравнению, дискриминант которого - полный квадрат; тем самым корни уравнения (2) сразу были вычислены по формуле корней квадратного уравнения, а далее относительно этих корней были сделаны выводы. Уравнение (3) было сведено к квадратному уравнению (4), дискриминант которого не является полным квадратом, поэтому при решении уравнения (3) целесообразно использовать теоремы о расположении корней квадратного трехчлена и графическую модель. Заметим, что уравнение (4) можно решить, используя теорему Виета.

Решим более сложные уравнения.

Задача 3. Решите уравнение

Решение. ОДЗ: x1, x2.

Введем замену. Пусть 2x = t, t > 0, тогда в результате преобразований уравнение примет вид t2 + 2t – 13 – a = 0. (*)Найдем значения a, при которых хотя бы один корень уравнения (*) удовлетворяет условию t > 0.

https://pandia.ru/text/80/142/images/image098.png" alt="http://1september.ru/ru/mat/2002/35/no35_23.gif" align="left" width="71" height="68 src=">где t0 - абсцисса вершины f(t) = t2 + 2t – 13 – a, D - дискриминант квадратного трехчлена f(t).

https://pandia.ru/text/80/142/images/image100.png" alt="http://1september.ru/ru/mat/2002/35/no35_25.gif" align="left" width="360" height="32 src=">

https://pandia.ru/text/80/142/images/image102.png" alt="http://1september.ru/ru/mat/2002/35/no35_27.gif" align="left" width="218" height="42 src=">

Ответ: если a > – 13, a  11, a  5, то если a – 13,

a = 11, a = 5, то корней нет.

Список используемой литературы.

1. Гузеев основания образовательной технологии.

2. Гузеев технология: от приема до философии.

М. «Директор школы»№4, 1996 г.

3. Гузеев и организационные формы обучения.

4. Гузеев и практика интегральной образовательной технологии.

М. «Народное образование», 2001 г.

5. Гузеев из форм урока – семинара.

Математика в школе №2, 1987 г. с.9 – 11.

6. Селевко образовательные технологии.

М. «Народное образование», 1998 г.

7. Епишева школьников учиться математике.

М. «Просвещение», 1990 г.

8. Иванова подготовить уроки – практикумы.

Математика в школе №6, 1990 г. с. 37 – 40.

9. Смирнова модель обучения математике.

Математика в школе №1, 1997 г. с. 32 – 36.

10. Тарасенко способы организации практической работы .

Математика в школе №1, 1993 г. с. 27 – 28.

11. Об одном из видов индивидуальной работы.

Математика в школе №2, 1994 г. с.63 – 64.

12. Хазанкин творческие способности школьников.

Математика в школе №2, 1989 г. с. 10.

13. Сканави. Издатель, 1997 г.

14. и др. Алгебра и начала анализа. Дидактические материалы для

15. Кривоногов задания по математике.

М. «Первое сентября», 2002 г.

16. Черкасов. Справочник для старшеклассников и

поступающих в вузы. «А С Т - пресс школа», 2002 г.

17. Жевняк для поступающих в вузы.

Минск И РФ «Обозрение», 1996 г.

18. Письменный Д. Готовимся к экзамену по математике. М. Рольф, 1999 г.

19. и др. Учимся решать уравнения и неравенства.

М. «Интеллект – Центр», 2003 г.

20. и др. Учебно – тренировочные материалы для подготовки к Е Г Э.

М. «Интеллект – центр», 2003 г. и 2004 г.

21 и др. Варианты КИМ. Центр тестирования МО РФ, 2002 г., 2003г.

22. Гольдберг уравнения. «Квант» №3, 1971 г.

23. Волович М. Как успешно обучать математике.

Математика, 1997 г. №3.

24 Окунев за урок, дети! М. Просвещение, 1988 г.

25. Якиманская – ориентированное обучение в школе.

26. Лийметс работа на уроке. М. Знание, 1975 г.

1º. Показательными уравнениями называют уравнения, содержащие переменную в показателе степени.

Решение показательных уравнений основано на свойстве степени: две степени с одним и тем же основание равны тогда и только тогда, когда равны их показатели.

2º. Основные способы решения показательных уравнений :

1) простейшее уравнение имеет решение ;

2) уравнение вида логарифмированием по основанию a сводят к виду ;

3) уравнение вида равносильно уравнению ;

4) уравнение вида равносильно уравнению .

5) уравнение вида через замену сводят к уравнению , а затем решают совокупность простейших показательных уравнений ;

6) уравнение со взаимно обратными величинами заменой сводят к уравнению , а затем решают совокупность уравнений ;

7) уравнения, однородные относительно a g (x) и b g (x) при условии вида через замену сводят к уравнению , а затем решают совокупность уравнений .

Классификация показательных уравнений.

1. Уравнения, решаемые переходом к одному основанию .

Пример 18. Решить уравнение .

Решение: Воспользуемся тем, что все основания степеней являются степенями числа 5: .

2. Уравнения, решаемые переходом к одному показателю степени .

Эти уравнения решаются преобразованием исходного уравнения к виду , которое использованием свойства пропорции приводится к простейшему.

Пример 19. Решить уравнение:

3. Уравнения, решаемые вынесением общего множителя за скобки .

Если в уравнении каждый показатель степени отличается от другого на некоторое число, то уравнения решаются вынесением за скобки степени с наименьшим показателем.

Пример 20. Решить уравнение .

Решение: Вынесем в левой части уравнения степень с наименьшим показателем за скобки:



Пример 21. Решить уравнение

Решение: Сгруппируем отдельно в левой части уравнения слагаемые, содержащие степени с основанием 4, в правой части – с основанием 3, затем вынесем степени с наименьшим показателем за скобки:

4. Уравнения, сводящиеся к квадратным (или кубическим) уравнениям .

К квадратному уравнению относительно новой переменной y сводятся уравнения:

а) вида подстановкой , при этом ;

б) вида подстановкой , при этом .

Пример 22. Решить уравнение .

Решение: Сделаем замену переменной и решим квадратное уравнение:

.

Ответ: 0; 1.

5. Однородные относительно показательных функций уравнения.

Уравнение вида является однородным уравнением второй степени относительно неизвестных a x и b x . Такие уравнения сводятся предварительным делением обеих частей на и последующей подстановкой к квадратным уравнениям.

Пример 23. Решить уравнение .

Решение: Разделим обе части уравнения на :

Положив , получим квадратное уравнение с корнями .

Теперь задача сводится к решению совокупности уравнений . Из первого уравнения находим, что . Второе уравнение не имеет корней, так как при любых значения x .

Ответ: -1/2.

6. Рациональные относительно показательных функций уравнения .

Пример 24. Решить уравнение .

Решение: Разделим числитель и знаменатель дроби на 3 x и получим вместо двух – одну показательную функцию:

7. Уравнения вида .

Такие уравнения с множеством допустимых значений (ОДЗ), определяемым условием , логарифмированием обеих частей уравнения приводятся к равносильному уравнению , которые в свою очередь равносильны совокупности двух уравнений или .

Пример 25. Решить уравнение: .

.

Дидактический материал.

Решите уравнения:

1. ; 2. ; 3. ;

4. ; 5. ; 6. ;

9. ; 10. ; 11. ;

14. ; 15. ;

16. ; 17. ;

18. ; 19. ;

20. ; 21. ;

22. ; 23. ;

24. ; 25. .

26. Найдите произведение корней уравнения .

27. Найдите сумму корней уравнения .

Найдите значение выражения:

28. , где x 0 – корень уравнения ;

29. , где x 0 – целый корень уравнения .

Решите уравнение:

31. ; 32. .

Ответы: 1. 0; 2. -2/9; 3. 1/36; 4. 0, 0.5; 5. 0; 6. 0; 7. -2; 8. 2; 9. 1, 3; 10. 8; 11. 5; 12. 1; 13. ¼; 14. 2; 15. -2, -1; 16. -2, 1; 17. 0; 18. 1; 19. 0; 20. -1, 0; 21. -2, 2; 22. -2, 2; 23. 4; 24. -1, 2; 25. -2, -1, 3; 26. -0.3; 27. 3; 28. 11; 29. 54; 30. -1, 0, 2, 3; 31. ; 32. .

Тема №8.

Показательные неравенства.

1º. Неравенство, содержащее переменную в показателе степени, называется показательным неравенством.

2º. Решение показательных неравенств вида основано на следующих утверждениях:

если , то неравенство равносильно ;

если , то неравенство равносильно .

При решении показательных неравенств используют те же приемы, что и при решении показательных уравнений.

Пример 26. Решить неравенство (методом перехода к одному основанию ).

Решение: Так как , то заданное неравенство можно записать в виде: . Так как , то данное неравенство равносильно неравенству .

Решив последнее неравенство, получим .

Пример 27. Решить неравенство: (методом вынесения общего множителя за скобки ).

Решение: Вынесем за скобки в левой части неравенства , в правой части неравенства и разделим обе части неравенства на (-2), поменяв знак неравенства на противоположный:

Так как , то при переходе к неравенству показателей знак неравенства опять меняется на противоположный. Получаем . Таким образом, множество всех решений данного неравенства есть интервал .

Пример 28. Решить неравенство (методом введения новой переменной ).

Решение: Пусть . Тогда данное неравенство примет вид: или , решением которого является интервал .

Отсюда . Поскольку функция возрастает, то .

Дидактический материал.

Укажите множество решений неравенства:

1. ; 2. ; 3. ;

6. При каких значениях x точки графика функции лежат ниже прямой ?

7. При каких значениях x точки графика функции лежат не ниже прямой ?

Решите неравенство:

8. ; 9. ; 10. ;

13. Укажите наибольшее целое решение неравенства .

14. Найдите произведение наибольшего целого и наименьшего целого решений неравенства .

Решите неравенство:

15. ; 16. ; 17. ;

18. ; 19. ; 20. ;

21. ; 22. ; 23. ;

24. ; 25. ; 26. .

Найдите область определения функции:

27. ; 28. .

29. Найдите множество значений аргумента, при которых значения каждой из функций больше 3:

и .

Ответы: 11. 3; 12. 3; 13. -3; 14. 1; 15. (0; 0,5); 16. ; 17. (-1; 0)U(3; 4); 18. [-2; 2]; 19. (0; +∞); 20. (0; 1); 21. (3; +∞); 22. (-∞; 0)U(0,5; +∞); 23. (0; 1); 24. (-1; 1); 25. (0; 2]; 26. (3; 3,5)U (4; +∞); 27. (-∞; 3)U{5}; 28. }