Новые летательные аппараты. Применение бпла в интересах военно-морских сил за рубежом Боевое применение военных бпла

23.06.2020 Авто / Мото

В голливудских фантастических фильмах довольно часто прослеживается образ беспилотного летательного ударного аппарата. Так вот, в настоящее время США являются лидерами мирового строительства и конструирования беспилотников . И не останавливаются на достигнутом, всё более наращивая парк БПЛА в вооруженных силах.

Получив опыт первой, второй Иракской кампаний и Афганской кампании, Пентагон продолжает развитие беспилотных систем. Будут увеличены закупки БПЛА, создаются критерии новых аппаратов. БПЛА сначала заняли нишу легких разведчиков, но уже в 2000-е годы стало ясно, что они перспективны и как ударные самолёты – применялись в Йемене, Ираке, Афганистане, Пакистане. Беспилотники стали полноценными ударными единицами.

MQ-9 Reaper «Жнец»

Последней покупкой Пентагона стал заказ 24 ударных БПЛА типа MQ-9 Reaper . Этот контракт почти удвоит их количество в вооруженных силах (в начале 2009 у США было 28 таких беспилотников). Постепенно «Жнецы» (по англо-саксонской мифологии образ смерти) должны заменить более старых «Хищников» MQ-1 Predator, их на вооружении примерно 200.

БПЛА MQ-9 Reaper впервые поднялся в воздух в феврале 2001 года . Аппарат был создан в 2-х версиях: турбовинтовой и турбореактивной, но ВВС США, заинтересовавшись новой техникой, указали на необходимость единообразия, отказавшись от закупки реактивного варианта. К тому же он, несмотря на высокие пилотажные качества (например, практический потолок до 19 километров), мог быть в воздухе не более 18 часов, что не устаивало ВВС. Турбовинтовая модель пошла в серию на 910-сильном двигателе TPE-331 – «детище» фирмы Garrett AiResearch.

Базовые ТТХ «Жнеца»:

— Вес: 2223 кг (пустой) и 4760 кг (максимальный);
— Максимальная скорость — 482 км/ч и крейсерская – около 300 км/ч;
Максимальная дальность полета – 5800…5900 км;
— С полной нагрузкой БПЛА будет выполнять свою работу около 14 часов. Всего же MQ-9 способен держаться в воздухе до 28-30 часов;
— Практический потолок — до 15 километров, а рабочий эшелон высот –7,5 км;

Вооружение «Жнеца» : имеет 6-ть точек подвески, общий объем полезной нагрузки до 3800 фунтов, так вместо 2-х управляемых ракет AGM-114 Hellfire на «Хищнике», его более совершенный собрат может взять до 14 УР.
Вторым вариантом оснащения «Жнеца» является комбинация из 4-х «Хеллфайров» и 2-х пятисотфунтовых корректируемых авиабомб GBU-12 Paveway II с лазерным наведением.
В калибре 500 фунтов также возможно и применение вооружения системы JDAM с GPS-наведением – например боеприпаса GBU-38. Оружие класса «воздух-воздух» представлено ракетами AIM-9 Sidewinder и с недавних пор AIM-92 Stinger – модификацией ракеты хорошо известного ПЗРК, приспособленной для воздушного старта.

БРЭО : Радиолокационная станция AN/APY-8 Lynx II с синтезированной апертурой, способная работать в режиме картографирования - в носовом обтекателе. На малых (до 70 узлов) скоростях радар позволяет сканировать поверхность с разрешением один метр, просматривая 25 квадратных километров в минуту. На больших скоростях (порядка 250 узлов) – до 60 квадратных километров.

В поисковых режимах РЛС, в так называемом режиме SPOT, обеспечивает получение с дистанции до 40 километров мгновенных «снимков» локальных участков земной поверхности размером 300×170 метров, разрешение при этом достигает 10 сантиметров . Комбинированная электронно-оптическая и тепловизионная прицельная станция MTS-B - на сферическом подвесе под фюзеляжем. Включает лазерный дальномер-целеуказатель, способный осуществлять целеуказание всему спектру боеприпасов США и НАТО с полуактивным лазерным наведением.

В 2007 году была сформированная первая ударная эскадрилья «Жнецов» , они поступили на вооружение 42-й ударной эскадрильи, которая расположена на авиабазе «Крич» в штате Невада. В 2008 году ими была вооружена 174-е истребительное авиакрылы ВВС Национальной гвардии. Специально оборудованные «Жнецы» также есть у НАСА, Министерства национальной безопасности, у Пограничной службы.
На продажу система не выставлялась. Из союзников «Жнецов» купила Австралия и Англия. Германия отказалась от этой системы в пользу своих разработок и израильских.

Перспективы

Следующее поколение средних БПЛА по программам MQ-X и MQ-M, должно встать на крыло к 2020 году. Военные хотят одновременно расширить боевые возможности ударного БПЛА и максимально его интегрировать в общую боевую систему.

Основные задачи:

— Планируют создать такую базовую платформу, которая сможет быть использована на всех театрах военных действий, что кратно повысит функциональные возможности беспилотной группировки ВВС в регионе, а также увеличит скорость и гибкость реакции на возникающие угрозы.

— Повышение автономности аппарата и увеличение возможностей выполнения задач в сложных погодных условиях. Автоматизм взлёта и посадки, выхода в район боевого патрулирования.

— Перехват воздушных целей, непосредственная поддержка сухопутных войск, применение беспилотника, как интегрированного разведывательного комплекса, комплекс задач РЭБ и задачи обеспечения связи и освещения обстановки в форме развертывания на базе летательного аппарата информационного шлюза.

— Подавление системы ПВО противника.

— К 2030 году планируют создать модель беспилотника-заправщика, своего рода беспилотный танкер, способный снабжать топливом иные летательные аппараты – это резко повысит длительность нахождения в воздухе.

— Есть планы создать модификации БПЛА, которые задействуют в поисково-спасательных и эвакуационных миссиях, связанных с авиационной переброской людей.

— В концепцию боевого применения БПЛА планируется заложить архитектуру так называемого «роя» (SWARM), который позволит обеспечивать совместное боевое применение групп беспилотных самолетов по обмену разведывательной информацией и ударным действиям.

— В итоге БПЛА должны «дорасти» до таких задач, как включение в систему ПВО-ПРО страны и даже нанесение стратегических ударов. Это отнесено к середине 21 века.

Флот

В начале февраля 2011 года с авиабазы «Эдвардс» (Калифорния) поднялся в воздух реактивный БПЛА Х-47В . Беспилотники для ВМС начали разрабатывать с 2001 года. Морские испытания должны начать с 2013 года.

Основные требования ВМФ:
—палубное базирование, включая посадку без нарушения режима малозаметности;
— два полноценных отсека для установки вооружения, общий вес которого, по ряду сообщений, может достигать двух тонн;
— система дозаправки в воздухе.

США разрабатывают список требований к истребителю 6-го поколения:

— Оснащение бортовыми информационно-управляющими комплексами следующего поколения, технологии малозаметности.

— Гиперзвуковая скорость, то есть скорости выше 5-6 Маха.

— Возможность беспилотного управления.

— Электронная элементная база бортовых комплексов самолёта должна уступить место оптической, построенной на технологиях фотоники, с полным переходом на волоконно-оптические линии связи.

Таким образом, США уверенно сохраняют позиции в разработке, развёртывании и накоплении опыта боевого применения БПЛА. Участие в ряде локальных войн позволило вооружённым силам США поддерживать личный состав в боеготовом состоянии, совершенствовать технику и технологии, схемы боевого применения и управления.

ВС получили уникальный боевой опыт и возможность на практике без крупных рисков вскрывать и исправлять огрехи проектировщиков. БПЛА становятся частью единой боевой системы – ведения «сетецентрической войны».

Не успели еще истребители пятого поколения стать полноценным оружием войны, а уже разгораются жаркие дискуссии о шестом поколении крылатых машин. Детально обрисовать облик последних пока сложно, но некоторые тенденции уже очевидны.

Конфликт поколений

Вопрос поколений крылатых машин – дискуссионный, четкой грани между ними зачастую нет. Успевшее набить оскомину пятое поколение характеризует, прежде всего, малозаметность, сверхзвуковая крейсерская скорость и сверхманевренность, а также интеграция в единую информационно-командную систему.

Но сколь бы совершенны ни были авиационные комплексы пятого поколения, у них есть одно слабое звено: человек. Считается, что боевой потенциал истребителя сегодня сдерживают ограничения человеческого организма и разума. Именно поэтому имеется повод рассуждать о том, что машины шестого поколения могут стать поголовно беспилотными и будут способны на скорость и маневренность, которая не снилась конструкторам минувших лет.

самолеты будущего

Впрочем, этот, казалось бы, очевидный тезис справедлив лишь отчасти. Дело в том, что ни огромная скорость, ни выдающаяся маневренность уже не спасают летательные аппараты от зенитных ракет. За последние десятилетия средства ПВО сделали большой скачок вперед, и теперь едва ли не единственное спасение от них – малозаметность.

С другой стороны, использование технологий стелс часто ведет к ухудшению летных характеристик, и всегда – к резкому удорожанию самолета. Особенно разница в цене ощутима для беспилотных систем. Например, разведывательный БПЛА RQ-4 Global Hawk стоит 140 млн долларов, а перспективные американские аппараты, построенные по стелс-технологии, обойдутся дороже в разы. Поэтому вопрос, будет ли истребитель шестого поколения беспилотным, во многом лежит в экономической плоскости.

По мнению ведущих специалистов, такой самолет должен существовать как в пилотируемой, так и в беспилотной версиях, причем пилотируемый вариант сможет использоваться как ведущий для небольшого звена, включающего несколько беспилотных аппаратов. Но зачем превращать истребитель в пункт управления беспилотниками, разве не проще это делать с земли? Проблема в том, что БПЛА еще не стали полностью автономными, а отправка сигналов с расстояния нескольких тысяч километров означает задержки. В современном воздушном бою, где все решают доли секунд, такое промедление смерти подобно. Кроме того, в серьезном конфликте обе стороны будут активно использовать всевозможные постановщики помех: к своим беспилотникам в такие моменты лучше держаться поближе.

самолеты будущего

самолеты будущего

Считается, что внешность боевых машин следующего поколения будет сильно отличаться от предыдущих: еще более малозаметные, они должны обрести еще большие летные способности. Если машины пятого поколения могут выполнять сложные маневры на дозвуковых скоростях, то шестое поколение должно делать это уже на сверхзвуковой скорости, а в форсаже набирать и гиперзвуковую (превышающей 5 Маха – около 6 тыс. км/ч).

В остальном машины шес­того поколения не будут принципиально отличаться от поколения пятого или четвертого с двумя плюсами. Они научатся еще шире взаимодействовать с наземными или морскими соединениями. Вооружение станет еще более дальнобойным, что позволит действовать за сотни километров от зоны поражения зенитно-ракетных систем противника. Гигантская цена боевых машин не позволит создавать узкоспециализированные самолеты, истребители лишь расширят свою многофункциональность, научившись применять весь спектр существующих вооружений.

Шестое поколение еще очень нескоро потеснит пятое. Даже истребители поколения четыре с плюсом будут служить еще не одно десятилетие, а уж такие самолеты как ПАК ФА и вовсе останутся на вооружении до 2050-х. Модернизационный потенциал современных истребителей очень велик, и технологии шестого поколения сначала найдут свое применение на машинах поколения предыдущего.

Возможно, к привычным для нас корректируемым бомбам и ракетам добавится еще и лазерное оружие. Так, ВВС США планируют оснас­тить шестое поколение лазерными системами нескольких типов. Маломощными –для выведения из строя датчиков противника, средней мощности – для уничтожения ракет. Наконец, мощные лазеры должны будут поражать авиацию врага и выводить из строя наземную технику. Но чтобы всерьез говорить об этом, нужно решить вопрос с источником питания, увеличить мощность и снизить цену лазерных комплексов.

самолеты будущего

Мнения

С просьбой внести ясность в воп­рос о том, как будут выглядеть истребители шес­того поколения, мы обратились к старшему преподавателю Национального аэрокосмичес­кого университета им. Н. Е. Жуковского Павлу Солянику. «Проблемы, стоящие перед разработчиками истребителей, не поменялись, – объяснил он. – Одним из главных аспектов являются более мощные двигатели. Они должны позволять развивать сверхзвуковую крейсерскую скорость без использования форсажа. К тому же, они должны быть экономичными и позволять летать на больших высотах. Ремонтоспособность – еще одно важное направление в вопросах создания новых боевых аппаратов. Есть мнение, что истребители шестого поколения будут гиперзвуковыми. Действительно, сейчас есть гиперзвуковые летательные аппараты, но все они существуют лишь в виде экспериментальных образцов. Как вы знаете, разница между экспериментальным и серийным аппаратом очень и очень велика».

Делить реактивные истребители на поколения придумали американцы, но с их методикой согласны не все. Например, шведы относят свой истребитель Saab JAS 39 Gripen к пятому поколению. Они полагают, что к последнему поколению следует отнести все истребители, которые могут действовать в рамках единого информационного поля.

Тот же вопрос мы задали продюсеру, QA-менеджеру, специалисту по авиационной документации компании Eagle Dynamics, занимающейся разработкой военных авиасимуляторов, в том числе для ВВС США, Андрею Чижу. «В США уже сейчас определяется «лицо» истребителя шестого поколения, – сообщил он. – Основное и принципиальное отличие от существующих машин в том, что шестое поколение, скорее всего, будет беспилотным. Отсутствие человека на борту решает сразу множество проблем, начиная с физиологических ограничений человеческого тела по перегрузке и длительности полета, и заканчивая морально-этическими проблемами возможной гибели пилота».

самолеты будущего

– С окончанием холодной войны скорость смены поколений самолетов сильно замедлилась, – добавил Андрей Чиж. – Если в середине XX века смена поколения проходила за 10-15 лет, то четвертое поколение истребителей отслужило 30-40 лет. Пятое поколение, по некоторым прогнозам, прослужит более 50 лет. За это время технологии боевого искусственного интеллекта продвинутся далеко вперед, что позволит создавать беспилотные аппараты более эффективные, чем пилотируемые. Уже сегодня проходят испытания перспективных БПЛА, таких как Х-47, которые предназначены для разведывательно-­ударных операций без участия человека. Их, с определенными оговорками, можно считать первыми ласточками нового поколения. Первые прототипы таких истребителей, вероятно, появятся в 2020-2030-х годах нашего века. Скорее всего, в США.

Белоголовый орлан

Как можно догадаться из названия, речь пойдет об американских разработках. Действительно, именно американцы ближе всех подошли к пониманию того, каким должен быть истребитель шестого поколения.

Подобным самолетом очень интересуется флот США. Сейчас на вооружении американских ВМС находятся более 450 современных истребителей F/A-18E/F Super Hornet и около 400 других модификаций F/A-18. В обозримом будущем к ним добавится палубная модификация F-35 – F35C. Но ресурс «шершней» небезграничен, а программа F-35 подвергается жесткой критике за излишнюю дороговизну и невысокую эффективность.

самолеты будущего

Парадоксально, но самый дорогой проект Пентагона – новейший истребитель F-35 – формально к пятому поколению не относится. Считается, что истребитель пятого поколения должен уметь летать со сверхзвуковой скоростью без использования форсажа и обладать сверхманевренностью. Истребитель F-35 на это неспособен. Кроме того, самолет уступает многим машинам четвертого поколения по тяговооруженности.

Специально для американского флота Boeing разработал концепт палубного истребителя шестого поколения F/A-XX. Иногда эту программу еще называют Next Generation Air Dominance. В будущем F/A-XX войдут в авиационную группировку авианосцев типа Джеральд Форд, которые начнут службу с 2015 года. Истребители F/A-XX смогут использоваться для завоевания превосходства в воздухе, уничтожения наземных подвижных и неподвижных целей, а также поражения кораблей противника.

Облик истребителя шестого поколения был представлен публике в 2008 году, во время авиашоу в Сан-Диего. Он создан по аэродинамической схеме «бесхвостка»: вертикальное оперение отсутствует, а форма крыла напоминает крылья малозаметных F-22 и F-35. Если верить американцам в том, что по части фронтальной малозаметности F-22 можно сравнить с насекомым, то, стоит полагать, что F/A-XX станет еще незаметнее. Обнаружить такой самолет устаревшим радаром будет почти невозможно.

На изображении F/A-XX предстает в виде двухместного летательного аппарата, что косвенно подтверждает мысль о его использовании для управления БПЛА. В будущем для решения стандартных боевых задач второй пилот, скорее всего, будет не нужен. А вот для координации действий беспилотников, построенных на базе F/A-XX, оператор очень даже пригодится. Разработчики полагают, что беспилотная версия сможет находиться в воздухе до 50 часов.

Странные впечатления оставляет гигантский вес F/A-XX. Сложно представить, как огромный 45-тонный «монстр» взмывает в небо с палубы авианосца. С другой стороны, увеличение общей массы истребителей – тренд последних десятилетий, и этот вопрос решается за счет установки более мощных двигателей. Например, вес пустого F-22A даже больше массы довольно тяжелого Су-27 (19 700 кг против 16 300 кг у Су-27П), но тяговооруженность – отношение мощности двигателей к массе летательного аппарата – лучше у F-22A.

самолеты будущего

На первом этапе для F/A‑XX может использоваться двигатель Pratt & Whitney F135, самый мощный из ныне существующих: на форсаже он способен развивать тягу до 19500 кгс. Сейчас им оборудованы F-35, но в отличие от них, F/A-XX будет иметь два двигателя F135. Истребитель F/A-XX может встать в строй примерно в 2025-2030 годах, но чтобы всерьез говорить о полноценной разработке, американскому флоту нужно найти как минимум 40 млрд долларов.

Помимо проекта F/A-XX существует еще одна концепция шестого поколения от Boeing – F-X. Насколько можно судить, она подразумевает создание истребителя не для флота, а в рамках требований ВВС США. Такой самолет должен будет заменить в рядах ВВС F-22A Raptor. Глава подразделения Boeing Phantom Works Дэрил Дэвис (Darryl Davis) заявил, что новый истребитель будет летать быстрее F-35 и сможет развивать сверхзвуковую крейсерскую скорость. Воздухозаборники F-X находятся в верхней части фюзеляжа – решение довольно необычное для истребителя. Пока что концепт разрабатывается лишь за счет самой компании Boeing: в последние годы Пентагон выделяет деньги на новые разработки без особого рвения. Помимо создания двух разных боевых машин, прорабатывается вариант единого истребителя для американских ВВС и ВМС.

Как и следовало ожидать, к гонке вооружений подключилась еще одна могущественная корпорация – Lockheed Martin. Ее представление о шестом поколении отличается от проектов Boeing. Концепт LM выглядит несколько более тради­ционно: самолет выполнен по интегральной аэродинамической схеме и во многом схож с YF-23. После 2030-х годов он должен будет постепенно заменить F-22A. Информации по новому проекту почти нет, пока он даже не имеет названия. Но очевидно, что Lockheed Martin приложит особое внимание к снижению радиолокационной заметной самолета. У сотрудников компании огромный опыт в этой области, ведь малозаметные истребители F-22A и F-35 – их разработки.

самолеты будущего

Демонстраторы технологий

Оригинально подошли к вопросу нового поколения европейцы: они отказались от пятого – и сразу перешли к созданию шестого. Dassault nEUROn стал своего рода проверкой для технологий нового поколения. Выполненный по технологии стелс разведывательно-ударный беспилотник впервые увидел небо в 2012 году. Аппарат дозвуковой и может развивать максимальную скорость 0,8 Маха. Экспериментальный БПЛА не пойдет в серию, но позволит отработать ряд технологий, которые лягут в основу настоящих машин шестого поколения. Но даже если самолет нового поколения и будет создан в Европе, наивно полагать, что он сможет составить достойную конкуренцию американским истребителям. Все-таки перешагнуть через целое поколение и остаться наравне с ведущими производителями довольно сложно.

Китай в данный момент занят разработкой истребителей пятого поколения J-20 и J-31 и тоже не прочь пофантазировать на тему самолета будущего. В 2013 году состоялся полет китайского ударного беспилотника-невидимки Lijian, технологии которого это самое будущее обеспечат. Lijian может брать полезную нагрузку массой до 2 т, а дальность его полета достигает 4 тыс. км. Можно быть полностью уверенным в том, что компании Chengdu Aircraft Industry Corporation и Shenyang довольно скоро вплотную подойдут к облику нового самолета.

самолеты будущего

Желание обзавестись шес­тым поколением изъявила и Япония. Истребитель будет создан на основании опыта, полученного в результате испытаний экспериментального аппарата ATD-X. Разработка шестого поколения будет вестись совместно с американцами. Сам проект ATD-X иногда называют прототипом пятого поколения, но это, насколько можно судить, неверно. ATD-X – не прототип, а демонстратор технологий будущего.

Как обстоят дела в России

Дабы сохранить статус великой державы, России нужно делать акцент на новых технологиях. Разработка истребителя шестого поколения входит в планы руководства РФ, но когда именно она начнется – неизвестно. Истребитель пятого поколения Т-50 ПАК ФА видится важным звеном в цепочке, ведущей к новым самолетам. Многое из того, что будет задействовано на машине шестого поколения, планируют отработать именно на ПАК ФА.

В прошлом году экс-главнокомандующий ВВС России Петр Дейнекин заявил, что российские специалисты уже прорабатывают облик новой боевой машины – вероятно, истребитель шестого поколения будет беспилотным. Но создать его быстрее американцев получится едва ли. Если в сфере пилотируемой военной авиации Россия успешно конкурирует с США, то по части беспилотников отстает очень заметно. Сроки испытаний БПЛА постоянно переносят, а сами испытания нередко заканчиваются неудачей.

самолеты будущего

Правда, заслуженный летчик-испытатель Сергей Богдан считает, что торопить события не стоит, как и не стоит списывать со счетов пилотируемую авиацию. Тем более, что, по его мнению, первый истребитель шестого поколения появится только через пятнадцать лет, а за это время многое может измениться.

Хотя с развитием беспилотных технологий в России ситуация сложилась непростая, на месте они, все же, не стоят. Самым амбициозным отечественным проектом в этой области стал малозаметный БПЛА «Скат», технологии которого могут когда-нибудь лечь в основу истребителя шестого поколения. Разведывательно-ударный дрон был разработан ОКБ МиГ и представлен на авиасалоне МАКС-2007. Увы, показанная машина была всего лишь макетом, а дальнейшая разработка «Ската» заморожена.

В заключение заметим, что сейчас любые уверенные прогнозы относительно шестого поколения преждевременны. Скорее всего, истребители шестого поколения многое унаследуют от пятого, а помимо этого станут беспилотными. Более прогнозируемый вариант – беспилотная и пилотируемая версии новых истребителей будут сосуществовать. Во всяком случае, на первом этапе.

В последние годы появилось большое количество публикаций по использованию для решения топографических задач беспилотных летательных аппаратов (БПЛА), или беспилотных авиационных систем (БАС). Такой интерес в немалой степени вызван простотой их эксплуатации, экономичностью, относительно невысокой стоимостью, оперативностью и т.д. Перечисленные качества и наличие эффективных программных средств автоматической обработки материалов аэрофотосъемки (включая выбор необходимых точек) открывают возможности широкого использования программно-технических средств беспилотной авиации в практике инженерно-геодезических изысканий.

В этом номере обзором технических средств беспилотной авиации мы открываем серию публикаций о возможностях БПЛА и опыте их использования при полевых и камеральных работах.

Д.П. ИНОЗЕМЦЕВ,руководитель проекта ООО«ПЛАЗ»,г. Санкт-Петербург

БЕСПИЛОТНЫЕ ЛЕТАТЕЛЬНЫЕ АППАРАТЫ: ТЕОРИЯ И ПРАКТИКА

Часть 1. Обзор технических средств

ИСТОРИЧЕСКАЯ СПРАВКА

Беспилотные летательные аппараты появились в связи с необходимостью эффективного решения военных задач - тактической разведки, доставки к месту назначения боевого оружия (бомб, торпед и др.), управления боевыми действиями и пр. И не случайно первым их применением считается доставка австрийскими войсками бомб к осажденной Венеции с помощью воздушных шаров в 1849 году . Мощным импульсом к развитию БПЛА послужило появление радиотелеграфа и авиации, что позволило существенно улучшить их автономность и управляемость.

Так, в 1898 году Никола Тесла разработал и продемонстрировал миниатюрное радиоуправляемое судно, а уже в 1910 году американский военный инженер Чарльз Кеттеринг предложил, построил и испытал несколько моделей беспилотных летательных аппаратов . В 1933 году в Великобритании разработан первый БПЛА

многократного использования, а созданная на его основе радиоуправляемая мишень использовалась в королевском флоте Великобритании до 1943 года.

На несколько десятков лет опередили свое время исследования немецких ученых, давших миру в 1940-х годах реактивный двигатель и крылатую ракету «Фау-1» как первый применявшийся в реальных боевых действиях беспилотный летательный аппарат.

В СССР в 1930–1940 годы авиаконструктором Никитиным был разработан торпедоносец-планер типа «летающее крыло», а к началу 40-х был подготовлен проект беспилотной летающей торпеды с дальностью полета от 100 километров и выше, однако в реальные конструкции эти разработки не превратились.

После окончания Великой Отечественной войны интерес к БПЛА существенно возрос, а начиная с 1960-х годов отмечается их широкое внедрение для решения задач невоенного характера.

В целом историю БПЛА можно условно разделить на четыре временных этапа :

1.1849 год–начало ХХ века - попытки и экспериментальные опыты по созданию БПЛА, формирование теоретических основ аэродинамики, теории полета и расчета самолета в работах ученых.

2.Начало ХХ века - 1945 год - разработка БПЛА военного назначения (самолетов-снарядов с небольшой дальностью и продолжительностью полета).

3.1945–1960 годы - период расширения классификации БПЛА по назначению и создание их преимущественно для разведывательных операций.

4.1960 годы - наши дни - расширение классификации и усовершенствование БПЛА, начало массового использования для решения задач невоенного характера.

КЛАССИФИКАЦИЯ БПЛА

Общеизвестно, что аэрофотосъемка, как вид дистанционного зондирования Земли (ДЗЗ), - это наиболее производительный метод сбора пространственной информации, основа для создания топографических планов и карт, создания трехмерных моделей рельефа и местности. Аэрофотосъемка выполняется как с пилотируемых летательных аппаратов - самолетов, дирижаблей мотодельтапланов и аэростатов, так и с беспилотных летательных аппаратов (БПЛА).

Беспилотные летательные аппараты, как и пилотируемые, бывают самолетного, а также вертолетного типа (вертолеты и мультикоптеры - летательные аппараты с четырьмя и более роторами с несущими винтами). В настоящее время в России не существует общепринятой классификации БПЛА самолетного типа. Missiles.

Ru совместно с порталом UAV.RU предлагает современную классификацию БПЛА самолетного типа , разработанную на основе подходов организации UAV International, но с учетом специфики и ситуации именно отечественного рынка (классы) (табл. 1):

Микро- и мини-БПЛА ближнего радиуса действия. Класс миниатюрных сверхлегких и легких аппаратов и комплексов на их основе с взлетной массой до 5 килограммов начал появляться в России относительно недавно, но уже довольно

широко представлен. Такие БПЛА предназначены для индивидуального оперативного использования на коротких дальностях на удалении до 25–40 километров. Они просты в эксплуатации и транспортировке, вы полняются складными и позиционируются как «носимые», запуск осуществляется, с помощью катапульты или с руки. Сюда относятся: Geoscan 101 , Geoscan 201 , 101ZALA 421-11, ZALA 421-08, ZALA 421-12, Т23 «Элерон», Т25, «Элерон-3», «Гамаюн-3», «Иркут-2М», «Истра-10»,

«БРАТ», «Локон», «Инспектор 101», «Инспектор 201», «Инспектор 301» и др.

Легкие БПЛА малого радиусадействия. К этому классу относятся несколько более крупные аппараты - взлетной массой от 5 до 50 килограммов. Дальность их действия - в пределах 10–120 километров.

Среди них: Geoscan 300, «ГрАНТ», ZALA 421-04, Орлан-10, ПтероСМ , ПтероЕ5 , Т10, «Эле рон-10», «Гамаюн-10», «Иркут-10»,

Т92 «Лотос», Т90 (Т90-11), Т21, Т24, «Типчак» БПЛА-05, БПЛА-07, БПЛА-08.


Легкие БПЛА среднего радиуса действия. Ряд отечественных образцов можно отнести к этому классу БПЛА. Их масса варьируется в пределах 50–100 килограммов. К ним относится: Т92М «Чибис», ZALA 421-09,

«Дозор-2», «Дозор-4», «Пчела-1Т».

Средние БПЛА. Взлетная масса средних БПЛА лежит в диапазоне от 100 до 300 килограммов. Они предназначены для применения на дальностях 150–1000 километров. В этом классе: М850 «Астра», «Бином», Ла-225 «Комар», Т04, Е22М «Берта», «Беркут», «Иркут-200».

Среднетяжелые БПЛА. Этот класс имеют схожую с БПЛА предыдущего класса дальность применения, но обладают несколько большей взлетной массой - от 300 до 500 килограммов.

К этому классу следует отнести: «Колибри», «Данэм», «Дань-Барук», «Аист» («Юлия»), «Дозор-3».

Тяжелые БПЛА среднего радиуса действия. Данный класс включает БПЛА полетной массой от 500 и более килограммов, предназначены для применения на средних дальностях 70–300 километров. В классе тяжлых следующие: Ту-243 «Рейс-Д», Ту-300, «Иркут-850», «Нарт» (А-03).

Тяжелые БПЛА большой продолжительности полета. Достаточно востребованная за рубежом категория беспилотных аппаратов, к которой относятся американские БПЛА Predator, Reaper, GlobalHawk, израильские Heron, Heron TP. В России образцы практически отсутствуют: «Зонд-3M», «Зонд-2», «Зонд-1», беспилотные авиационные системы Сухого («БасС»), в рамках которой создается роботизированный авиационный комплекс (РАК).

Беспилотные боевые самолеты (ББС). В настоящее время в мире активно ведутся работы по созданию перспективных БПЛА, имеющих возможность нести на борту оружие и предназначенных для ударов по наземным и надводным стационарным и подвижным целям в условиях сильного противодействия сил ПВО противника. Они характеризуются дальностью действия около 1500 километров и массой от 1500 килограммов.

На сегодняшний день в России в классе ББС представлено два проекта: «Прорыв-У», «Скат» .

На практике для аэрофотосъемки, как правило, применяются БПЛА весом до 10–15 килограммов (микро-, мини-БПЛА и легкие БПЛА). Это связано с тем, что при увеличении взлетного веса БПЛА растет сложность его разработки и, cоответственно, стоимость, но снижается надежность и безопасность эксплуатации. Дело в том, что при посадке БПЛА выделяется энергия E = mv2 / 2, а чем больше масса аппарата m, тем больше его посадочная скорость v, то есть выделяемая при посадке энергия очень быстро растет с ростом массы. А эта энергия может повредить как сам БПЛА, так и находящееся на земле имущество.

Беспилотный вертолет и мультикоптер лишены этого недостатка. Теоретически, такой аппарат можно посадить со сколь угодно малой скоростью сближения с Землей. Однако беспилотные вертолеты слишком дороги, а коптеры пока не способны летать на большие расстояния, и применяются только для съемки локальных объектов (отдельных зданий и сооружений).

Рис. 1. БПЛА Mavinci SIRIUS Рис. 2. БПЛА Geoscan 101

ПРЕИМУЩЕСТВА БПЛА

Превосходством БПЛА перед пилотируемыми воздушными судами является, прежде всего, стоимость производства работ, а также значительное уменьшение количества регламентных операций. Само отсутствие человека на борту самолета значительно упрощает подготовительные мероприятия для проведения аэрофотосъемочных работ.

Во-первых, не нужен аэродром, даже самый примитивный. Беспилотные летательные аппараты запускаются или с руки, или с помощью специального взлетного устройства - катапульты.

Во-вторых, особенно при использовании электрической двигательной схемы, отсутствует необходимость в квалифицированной технической помощи для обслуживания летательного аппарата, не так сложны мероприятия по обеспечению безопасности на объекте работ.

В-третьих, отсутствует или намного увеличен межрегламентный период эксплуатации БПЛА по сравнению с пилотируемым воздушным судном.

Данное обстоятельство имеет большое значение при эксплуатации аэрофотосъемочного комплекса в удаленных районах нашей страны. Как правило, полевой сезон аэрофотосъемочных работ короток, каждый погожий день необходимо использовать для производства съемки.

УСТРОЙСТВО БПЛА

две основные схемы компоновки БПЛА: классическая (по схеме «фюзеляж+крылья+хвост»), к которой относится, например БПЛА «Орлан-10», Mavinci SIRIUS (рис. 1) и др., и «летающее крыло», к которой относятся Geoscan101 (рис. 2), Gatewing X100 , Trimble UX5 и др.

Основными частями беспилотного аэрофотосъемочного комплекса являются: корпус, двигатель, бортовая система управления (автопилот), наземная система управления (НСУ) и аэрофотосъемочное оборудование.

Корпус БПЛА изготавливают излегкого пластика (например, углепластика или кевлара), чтобы защитить дорогостоящую фотоаппаратуру и средства управления и навигации, а его крылья - из пластика или экструдированного пенополистирола (EPP). Этот материал легок, достаточно прочен и не ломается при ударе. Деформированную деталь из ЕРР зачастую можно восстановить подручными средствами.

Легкий БПЛА с посадкой на парашюте может выдержать несколько сотен полетов без ремонта, который, как правило, включает замену крыльев, элементов фюзеляжа и др. Производители стараются удешевить части корпуса, подверженные износу, чтобы расходы пользователя на поддержа-БПЛА в рабочем состоянии были минимальными.

Надо отметить, что наиболее дорогостоящие элементы аэрофотосъемочного комплекса, наземная система управления, авионика, программное обеспечение, - вообще не подвержены износу.

Силовая установка БПЛА можетбыть бензиновой или электрической. Причем, бензиновый двигатель обеспечит намного более продолжительный полет, так как в бензине, в расчете на килограмм, запасено в 10–15 раз больше энергии, чем мож-но сохранить в самом лучшем аккумуляторе. Однако такая силовая установка сложна, менее надежна и требует значительного времени для подготовки БПЛА к старту. Кроме того, беспилотный летательный аппарат с бензиновым двигателем крайне сложно перевозить к месту работ на самолете. Наконец, он требует от оператора высокой квалификации. Поэтому бензиновый БПЛА имеет смысл применять только в тех случаях, когда необходима очень большая продолжительность полета - для непрерывного мониторинга, для обследования особо удаленных объектов.

Электрическая двигательная установка, напротив, очень нетребовательна к уровню квалификации обслу-живающего персонала. Современные аккумуляторные батареи могут обеспечить длительность непрерывного полета свыше четырех часов. Обслуживание электрического двигателя совсем несложно. Преимущественно это только защита от влаги и грязи, а также проверка напряжения бортовой сети, что осуществляется с наземной системы управления. Зарядка аккумуляторов производится от бортовой сети сопровождающего автомобиля или от автономного электрогенератора. Бесколлекторный электрический двигатель БПЛА практически не изнашивается.

Автопилот -с инерциальной системой (рис. 3) - наиболее важный элемент управления БПЛА.

Автопилот весит всего 20–30 граммов. Но это очень сложное изделие. В автопилоте, кроме мощного процессора, установлено множество датчиков - трехосевые гироскоп и акселерометр (а иногда и магнитометр), ГЛО-НАСС/GPS-приемник, датчик давления, датчик воздушной скорости. С этими приборами беспилотный летательный аппарат сможет летать строго по заданному курсу.

Рис. 3. АвтопилотMicropilot

В БПЛА имеется радиомодем, необходимый для загрузки полетного задания, передачи в наземную систему управления телеметрических данных о полете и текущем местоположении на участке работ.

Наземная система управления

(НСУ) -это планшетный компьютерили ноутбук, оснащенный модемом для связи с БПЛА. Важная часть НСУ - программное обеспечение для планирования полетного задания и отображения хода его выполнения.

Как правило, полетное задание составляется автоматически, по заданному контуру площадного объекта или узловым точкам линейного объекта. Кроме того, существует возможность проектирования полетных маршрутов, исходя из необходимой высоты полета и требуемого разрешения фотоснимков на местности. Для автоматического выдерживания заданной высоты полета есть возможность учесть в полетном задании цифровую модель местности в распространенных форматах.

Во время полета на картографической подложке монитора НСУ отображается положение БПЛА и контуры снимаемых фотографий. Оператор имеет возможность во время выполнения полета оперативно перенацелить БПЛА на другой район посадки и даже оперативно посадить беспилотник с «красной» кнопки наземной системы управления. По команде с НСУ могут быть запланированы и другие вспомогательные операции, например - выброс парашюта.

Кроме обеспечения навигации и обеспечения полета автопилот должен управлять фотоаппаратом, чтобы получать снимки с заданным межкадровым интервалом (как только БПЛА пролетит нужное расстояние от предыдущего центра фотографирования). Если заранее рассчитанный межкадровый интервал не выдерживается стабильно, приходится настраивать время срабатывания затвора с таким расчетом, чтобы даже при попутном ветре продольное перекрытие было достаточным.

Автопилот должен регистрировать координаты центров фотографирования геодезического спутникового приемника ГЛОНАСС/GPS, чтобы программа автоматической обработки снимков смогла построить модель быстро и привязать ее к местности. Требуемая точность определения координат центров фотографирования зависит от технического задания к выполнению аэрофотосъемочных работ.

Аэрофотосъемочное оборудование на БПЛА устанавливается в зависимости от его класса и цели использования.

На микро- и мини-БПЛА устанавливаются компактные цифровые фотокамеры, комплектуемые сменными объективами с постоянным фокусным расстоянием (без трансфокатора или zoom-устройства) весом 300–500 граммов. В качестве таких камер в настоящее время используются фотоаппараты SONY NEX-7

с матрицей 24,3 МП, CANON600D матрицей 18,5 МП и подобные им. Управление срабатыванием затвора и передача сигнала от затвора в спутниковый приемник производится с помощью штатных или незначительно доработанных электрических разъемов фотоаппарата.

На легкие БПЛА малого радиуса действия устанавливаются зеркальные фотокамеры с большим размером светочувствительного элемента, например CanonEOS5D(размер сенсора 36×24 мм) , NikonD800 (матрица 36,8 МП (размер сенсора 35,9×24 мм)), Pentax645D(CCD-сенсор 44×33 мм, матрица 40 МП) и им подобные, весом 1,0–1,5 килограмма.

Рис. 4. Схема размещения аэроснимков (голубые прямоугольники с подписями номеров)

ВОЗМОЖНОСТИ БПЛА

Согласно требованиям документа «Основные положения по аэрофотосъемке, выполняемой для создания и обновления топографических карт и планов» ГКИНП-09-32-80 носитель аэрофотосъемочной аппаратуры должен предельно точно следовать проектному положению маршрутов аэрофотосъемки, выдерживать заданный эшелон (высоту фотографирования), обеспечивать требования по соблюдению предельных отклонений по углам ориентирования фотокамеры - наклон, крен, тангаж. Кроме того, навигационная аппаратура должна обеспечивать точное время срабатывания фотозатвора и определять координаты центров фотографирования.

Выше указывалась аппаратура, интегрированная в автопилот: это микробарометр, датчик воздушной скорости, инерциальная система, навигационная спутниковая аппаратура. По проведен-ным испытаниям (в частности, БПЛА Geoscan101) были установлены следующие отклонения реальных параметров съемки от заданных:

Уклонения БПЛА от оси маршрута - в диапазоне 5–10 метров;

Уклонения высот фотографирования - в диапазоне 5–10 метров;

Колебание высот фотографирования смежных снимков - не более

Возникающие в полете «елочки» (развороты снимков в горизонтальной плоскости) обрабатываются автоматизированной системой фотограмметрической обработки без заметных негативных последствий.

Фотоаппаратура, устанавливаемая на БПЛА, позволяет получить цифровые изображения местности с разрешением лучше 3 сантиметров на один пиксель. Применение коротко-, средне-, и длиннофокусных фотообъективов определяется ха-рактером получаемых готовых мате-риалов: будь это модель рельефа или ортофотоплан. Все расчеты производятся так же, как и в «большой» аэрофотосъемке.

Применение двухчастотной ГЛО-НАСС/GPSспутниковой геодезической системы для определения координат центров снимков позволяет в процессе постобработки получить координаты центров фотографирования с точностью лучше 5 сантиметров, а применение метода PPP(PrecisePointPositioning) - позволяет определять координаты центров снимков без использования базовых станций или на значительном удалении от них.

Конечная обработка материалов аэрофотосъемки может служить объективным критерием оценки качества выполненной работы. Для иллюстрации можно рассмотреть данные об оценке точности фотограмметрической обработки материалов аэрофотосъемки с БПЛА, выполненной в ПО «PhotoScan» (производства фирмы Agisoſt, г. СанктПетербург) по контрольным точкам (табл. 2).

Номера точек

Ошибки по осям координат, м

Абс, пикс

Проекции

(ΔD)2= ΔХ2+ ΔY2+ ΔZ2

ПРИМЕНЕНИЕ БПЛА

В мире, а в последнее время и в России, беспилотные летательные аппараты применяются в геодезических изысканиях при строительстве , для составления кадастровых планов промышленных объектов, транспортной инфраструктуры, поселков, дачных массивов, в маркшейдерском деле для определения объемов горных выработок и отвалов, при учете движения сыпучих грузов в карьерах, портах, горнообогатительных комбинатах, для создания карт, планов и 3D-моделей городов и предприятий.

3. Цепляева Т.П., Морозова О.В. Этапы развития беспилотных летательных аппаратов. М., «Открытые информационные и компьютерные интегрированные технологии», № 42, 2009.

Здравствуйте!

Сразу хочу сказать, что поверить в это сложно, почти невозможно во всём виноват стереотип, но попытаюсь изложить это понятно и аргументировать конкретными испытаниями.

Моя статья предназначается для людей, связанных, с авиацией или тем кому интересна авиация.

В 2000 году, возникла идея, траектория движения механической лопасти по окружности с разворотом на своей оси. Как изображено на Рис.1.

И так представим, лопасть (1), (плоская прямоугольная пластина, вид сбоку) вращаясь по окружности (3) разворачивается на своей оси (2) в определённой зависимости, на 2 градуса вращения по окружности, 1 градус разворота на своей оси (2). В результате мы имеем изображенную на Рис.1 траекторию движения лопасти (1). А теперь представим, что лопасть находится в текучей среде, в воздухе или воде, при таком движении происходит следующее, двигаясь в одну сторону (5) по окружности, лопасть имеет максимальное сопротивление текучей среде, а двигаясь в другую сторону (4) по окружности, имеет минимальное сопротивление текучей среде.

Это и есть принцип работы движителя, осталось изобрести механизм исполняющий траекторию движения лопасти. Этим я и занимался с 2000 по 2013 год. Механизм назвал ВРК, расшифровывается как вращающееся разворачивающееся крыло. В данном описании крыло, лопасть, и пластина имеют одинаковое значение.

Создал свою мастерскую и начал творить, варианты пробовал разные, приблизительно в 2004-2005 получил следующий результат.


Рис. 2


Рис. 3

Сделал тренажёр для проверки подъёмной силы ВРК Рис.2. ВРК выполнен трёх лопастным, лопасти по внутреннему периметру имеют натянутую красную плащевую ткань, смысл тренажера преодолеть силу тяжести в 4 кг. Рис.3. Безмен я крепил к валу ВРК. Результат Рис.4:


Рис. 4

Тренажёр с легкостью поднял этот груз, был репортаж по местному телевидению ГТРК Бира, это кадры из этого репортажа. Потом добавил скорость и отрегулировал на 7 кг., тренажер поднял и этот груз, после этого попытался добавить ещё скорость, но механизм не выдержал. Поэтому судить об эксперименте могу по этому результату, хотя он и не окончательный, а в цифрах это выглядит так:

На клипе изображен тренажёр для испытания подъёмной силы ВРК. На ножках, шарнирно закреплена горизонтальная конструкция, с одной стороны установлено ВРК с другой привод. Привод – эл. двигатель 0,75кВт, КПД эл. двигателя 0,75% то есть фактически двигатель выдаёт 0,75*0,75=0,5625КВт, нам известно что 1л.с=0,7355кВт.

Перед включением тренажера я безменом взвешиваю вал ВРК, вес составляет 4кг. Это видно из клипа, после репортажа я изменил передаточное число, добавил скорость и добавил вес, в итоге тренажер поднял 7 килограмм, после при увеличении веса и оборотов, он не выдержал. Вернёмся к расчётам по факту, если 0,5625кВт поднимает 7 кг то 1л.с=0,7355кВт поднимет 0,7355кВт/0,5625КВт=1,3 и 7*1,3=9,1кг.

Движитель ВРК при испытании показал вертикальную подъёмную силу 9,1кг/на одну лошадиную силу. К примеру у вертолёта подъёмная сила в два раза меньше. (сравниваю технические характеристики вертолётов, где максимальная взлётная масса на мощность двигателя составляет 3,5-4 кг./на 1л.с., у самолёта она составляет 8 кг./на 1 л.с.). Хочу заметить, что это не окончательный результат, для испытаний, ВРК необходимо сделать в заводских условиях и на стенде с точными приборами, определить подъёмную силу.

Движитель ВРК, имеет техническую возможность, изменять направление движущей силы на 360 градусов, это позволяет осуществлять вертикальный взлёт и переходить на движение по горизонтали. В этой статье я не останавливаюсь на этом вопросе, это изложено в моих патентах.

Получил 2 патента за ВРК Рис.5, Рис.6, но сегодня они не действуют за неуплату. Но всей информации для создания ВРК в патентах нет.


Рис. 5


Рис. 6

Теперь самое сложное, у всех сложился стереотип о существующих летательных аппаратах, это самолёт и вертолёт (я не беру примеры на реактивной тяге или ракеты).

ВРК – обладая преимуществом перед винтом такими как, более высокая движущая сила и изменением направления движения на 360 градусов, позволяет создавать совершенно новые летательные аппараты различного назначения, которые будут вертикально взлетать с любой площадки и плавно переходить в горизонтальное движение.

По сложности производства, летательные аппараты с ВРК не сложнее автомобиля, назначение летательных аппаратов может быть самое различное:

  • Индивидуальные, надел на спину, и полетел как птица;
  • Семейный вид транспорта, на 4-5 чел, Рис.7;
  • Муниципальный транспорт: скорая помощь, полиция, администрация, пожарная, МЧС и т.п., Рис.7;
  • Аэробусы для периферийного, и междугороднего сообщения, Рис.8;
  • Летательный аппарат, взлетающий вертикально на ВРК, переходящие на реактивные двигатели, Рис. 9;
  • И любые летательные аппараты для всевозможных задач.


Рис. 7


Рис. 8


Рис. 9

Вид у них и принцип полёта, сложен к восприятию. Кроме летательных аппаратов ВРК может быть использован как движитель для плавательных аппаратов, но этой темы мы здесь не касаемся.

ВРК это целое направление, с которым мне одному не справиться, хочется надеяться что это направление потребуется в России.

Получив результат 2004-2005 году, я был окрылён и надеялся, что быстро донесу свои мысли до специалистов, но пока этого не случилось, все годы делал новые варианты ВРК, применял разные кинематические схемы, но результат испытаний был отрицательным. В 2011 году, повторил вариант 2004-2005 года, эл. двигатель включил через инвертор, этим обеспечил плавный пуск ВРК, правда, механизм ВРК выполнил из доступных мне материалов по упрощённому варианту, поэтому максимальную нагрузку дать не могу, отрегулировал на 2 кг.

Медленно поднимаю обороты эл. двигателя, в результате ВРК показывает бесшумный плавный взлёт.

Полный клип последнего испытания:

На этой оптимистичной ноте прощаюсь с Вами.

С уважением, Кохочев Анатолий Алексеевич.

1 136

Б еспилотные летательные аппараты, или БПЛА, в международной практике обозначаются англоязычной аббревиатурой UAV (Unmanned Aerial Vehicle ). В настоящее время номенклатура этого типа систем достаточно разнообразна и находит все более широкое распространение. В статье приводятся основные направления развития и классификация БПЛА морского назначения. Публикация завершает серию статей о необитаемых системах военного назначения, состоящих на вооружении современных ВМС зарубежных стран.

Основные направления развития БПЛА

Использование военных БПЛА над морем осуществляется как с кораблей, так и с наземных опорных пунктов. Зарубежными экспертами определены следующие направления развития беспилотных летательных аппаратов:

  • гибкость: среди военных БПЛА, только часть ориентирована для выполнения исключительно морских миссий. Большинство беспилотников, предназначенных для действий над морем, при необходимости, путем изменения полезной нагрузки или системы привода, пригодны также для использования над сушей. За исключением моделей на аккумуляторных батареях большая часть военных БПЛА морского назначения используют военное авиационное топливо, а в некоторых случаях, по выбору, также корабельное дизельное топливо.
  • автономия: в принципе каждый БПЛА может управляться дистанционно. Превалирующим направлением развития, однако, считается разработка автономно действующих систем. Прежде всего, большие БПЛА со значительной продолжительностью полета должны завершать свою миссию самостоятельной посадкой на аэродром взлета.
  • применение отрядов, или групп (тактика роя): согласно некоторым сценариям сотни малых или микро БПЛА должны самостоятельно поддерживать связь между собой с целью выполнения скоординированных задач. Использование отрядов БПЛА призвано перегружать и преодолевать систему обороны противника.
  • взаимодействие систем разного типа: БПЛА будут преимущественно применяться в сочетании с пилотируемыми системами (Manned / Un-Manned Teaming — MUM-T ). Например, пилотируемый самолет с целью обнаружения и захвата цели высылает вперед БПЛА в качестве средства разведки. В дальнейшем пилот самолета поражает цель дистанционным оружием, не заходя в зону действия ПВО противника. Другим вариантом является взаимное автономное или полу-автономное оперирование БПЛА с наземными, надводными или подводными необитаемыми системами (Un-Manned / Un-Manned Teaming, UM-UM-T ).
  • глобализация: помимо США, самой активной страной в секторе развития, производства и экспорта БПЛА считается Китай. Согласно некоторым оценкам, Пекин с 2025 года станет ведущим экспортером военных БПЛА. Тем не менее, во всем мире растет число стран, производящих БПЛА военного или двойного назначения. В частности, все большее значение приобретают транснациональные проекты в Европе.

Классифицирование БПЛА может быть проведено в основном по двум параметрам: согласно их основного предназначения или по размеру и боевой эффективности (производительности). Ниже приводятся примеры принятых на вооружение и перспективных образцов военных БПЛА.

По задачам

Наиболее важными для морских беспилотных систем до сих пор остаются задачи разведки и мониторинга (Intelligence, Surveillance, Reconnaissance/рекогнаосцировка – ISR ). К ним добавляются выполнение вооруженных миссий и другие мероприятия по поддержке ВМС.

Разведывательные БПЛА

Использование малых и средних БПЛА с борта военных кораблей в качестве тактических разведчиков растет во всем мире. В одном ангаре для вертолета могут размещаться вплоть до трех БПЛА среднего размера. При поочередном использовании они способны гарантировать ведение практически непрерывного наблюдения.

Особенно успешной считается модель «Кемкоптер S-100» (Camcopter S-100 ) компании «Шибель» (Schiebel, Австрия). Этот БПЛА с 2007 года протестирован и принят на вооружение ВМС девяти стран.

Camcopter S-100 при весе 200 кг обеспечивает 6-часовую продолжительность полета, которая может быть увеличена до 10 часов с помощью дополнительных топливных баков. В стандартный набор полезной нагрузки входят оптико-электронные инфракрасные датчики (ЕO/IR ). Возможно их дополнение одной SAR-РЛС (РЛС с синтезированной апертурой) для наземного и морского наблюдения. Отмечается также, что БПЛА, в принципе, может вооружаться легкими многоцелевыми ракетами типа LMM (Lightweight Multirole Missile ). Ракеты изготавливаются французской компанией «Талес» (Thales) и предназначены для поражения легких морских и воздушных целей.

Проект беспилотного вертолета MQ-8B «Фаэ Скаут» (Fire Scout , Огненный скаут) запущен ВМС США в 2009 году. Аппарат весит 940 кг. В оперативном отношении система MQ-8 включает одну консоль управления (размещается на пилотируемом вертолете или корабле) и до трех БПЛА.


В первую очередь MQ-8B предназначен для использования на эсминцах, фрегатах и кораблях прибрежной морской зоны LCS (Littoral Combat Ship ). Одна машина имеет продолжительность полета до 8 часов и способна вести разведку и наблюдение в радиусе 110 морских миль от корабля-носителя. Полезная грузоподъемность составляет 270 кг. Сенсорное оборудование модели MQ-8B включает лазерное устройство обнаружения цели.


Данные целеуказания могут передаваться на корабли или летательные аппараты в режиме реального времени. Этот параметр прошел тестирование 22 августа 2017 года в водах у о. Гуам. Согласно заданию, один БПЛА MQ-8B управлял наведением на цель выпущенной с корабля противокорабельной ракетой «Гарпун». Как пояснил контр-адмирал Дон ГАБРИЭЛЬСОН (Don GABRIELSON), командующий 73 оперативным соединением ВМС США (Task Force 73 ), эта способность особенно ценна в водах архипелагов островов, где военные корабли редко имеют прямой визуальный контакт со своими целями.

В дополнение к EO/IR датчикам возможна установка SAR-РЛС для обнаружения и отслеживания воздушных и морских целей. Дополнительные модули полезной нагрузки обеспечивают также альтернативное использование MQ-8B. В числе вариантов применения БПЛА: ретрансляция сигналов связи, разведка морских мин и подводных лодок, управление ракетами с лазерным наведением, а также обнаружение радиоактивных, биологических и химических боевых веществ.

Боевое применение военных БПЛА

Различные страны стремятся к выполнению с помощью беспилотных систем задач аналогичных для истребителя-бомбардировщика. Так, в 2016 году завершил первый летный тест в ВМС Франции многонациональный европейский концептуальный самолет nEUROn. Прежде всего, проверялась пригодность модели, изготовленной с применением технологии «стелс», для выполнения задач над морем. В частности, дрон совершил посадку на участвовавший в испытаниях авианосец «Шарль де Голль».


Как ВМС Франции, так и ВМС Великобритании стремятся к приобретению боевого стелс-БПЛА, пригодного для базирования на авианосце. Вероятно, что эта способность получит реализацию в развиваемом Парижем и Лондоном совместном проекте беспилотной авиационной боевой системы будущего (Future Combat Air System, FCAS ). Как заявил в сентябре 2017 года главный технолог компании BAE Найджел УАЙТХЕД (Nigel WHITEHEAD), FCAS может поступить на вооружение около 2030 года и будет применяться совместно с пилотируемыми самолетами.


По оценкам западных экспертов, в секторе боевых БПЛА вперед значительно ушли ВС Китая. Разрабатываемый компанией «Авиэйшен Индастри Корпорейшн Чайна» (Aviation Industry Corporation China) самолет «Лицзянь» (Lijian , Острый меч) считается первым беспилотным стелс-самолетом за пределами зоны НАТО.


Размещенная внутри машины полезная нагрузка достигает, по оценкам, двух тонн. Десятиметровый реактивный самолет имеет размах крыла 14 м. Самолет предназначен для скрытного наблюдения за боевыми кораблями противника и нанесения первичного поражения важным целям, прикрытым поясом ПВО. Под такими целями аналитики понимают американские и японские корабли или военные базы. Предполагается, что ведется разработка авианосного варианта БПЛА.

Китайские неофициальные источники сообщают о вводе модели в эксплуатацию к 2020 году. По западным же оценкам, этот срок довольно оптимистичен, учитывая тот факт, что первый полет «Лицзянь» совершил только в 2013 году.

Профессиональный журнал «Джейн» в июле 2017 года сообщил о секретном китайском проекте, обозначенном как CH-T1. Беспилотный летательный аппарат длиной 5,8 м обладает «стелсподобными» свойствами и предназначен для полетов над морем на высоте в один метр. Это, как считается, должно позволять БПЛА не обнаруживать себя и гарантировать приближение к кораблю на расстояние до 10 морских миль. При общем весе дрона 3000 кг, вес полезной нагрузки оценивается в одну тонну. Предполагается, что она может состоять из противокорабельных ракет или торпед. Подробная информация о серийной готовности проекта неизвестна.


Беспилотники – заправщики

Первоначально, на рубеже 2020 года ВМС США планировали приступить к внедрению авианосных беспилотных боевых самолетов. Однако, после нескольких лет концептуальных исследований в 2016 году командованием ВМС принято решение о принятии на вооружение сначала реактивного беспилотного танкера MQ-25A «Стингрей» (Stingray , Скат). В качестве второстепенных задач для этого БПЛА фигурируют разведывательные полеты и использование в качестве коммуникационного ретранслятора.


Контракт на проектирование в 2018 году будет передан четырем конкурирующим компаниям. Начало серийной разработки ожидается в середине 2020-х годов. Шесть аппаратов «Стингрей» предусматривается интегрировать в каждую из авианосных авиационных эскадрилий ВМС США. Один БПЛА MQ-25A должен поддерживать до шести истребителей F/A-18. Это позволит увеличить их эффективную боевую дальность полета от 450 до 700 морских миль.

Классификация БПЛА по размеру и производительности

Малые и микро беспилотники

По мнению западных специалистов, беспилотные летательные аппараты малого размера наилучшим образом подходят для оперативного использования в составе отряда. ВМС США в 2016 году проверили концепцию технологии роя недорогих БПЛА (Low Cost WAV Swarming Technology, LOCUST ).

Девять аппаратов модели «Койот» (Coyote ) компании «Рейтеон» (Raytheon, США) после быстрого последовательного запуска с ракетной пусковой установки выполнили плановую автономную разведывательную миссию. В ходе ее проведения БПЛА координировали между собой направление полета, построение боевого порядка роя, дистанцию между машинами.


Использовавшаяся для запуска установка способна запустить в течение 40 сек. до 30 БПЛА. При этом, дрон имет 0,9 м в длину и весит девять килограмм. Время и дальность полета «Койота» составляют около двух часов и 110 морских миль соответственно. Предполагается, что подобные отряды могли бы использоваться в будущем для проведения наступательных операций. В частности, аналогичные БПЛА, снаряженные малыми зарядами ВВ, могли бы уничтожать сенсоры или бортовое вооружение вражеских кораблей и катеров.

Другим вариантом является система «Фулмар» (Fulmar ) от компания Thales. БПЛА имеет взлетный вес 20 кг, длину 1,2 м и размах крыла три метра.

Согласно публикациям, несмотря на небольшие размеры «Фулмар» показывает значительную оперативную производительность. Время выполнения миссии – до 12 час. Боевая дальность полета – 500 морских миль. Возможность ведения видеонаблюдения за целями на расстоянии до 55 морских миль. Аппарат пригоден к полетам при скорости ветра до 70 км в час.


Полет выполняется по выбору, либо в полностью автоматическом режиме, либо с использованием дистанционного управления. Как и многие малые БПЛА морского базирования «Фулмар» запускается катапультой, а после окончания миссии приниматься развернутой на палубе корабля сетью. Основными задачами модели являются ведение разведки и работа в качестве ретранслятора для организации связи. Сообщается, что боевое применение «Фулмар» пока не предусматриваются.

Основным преимуществом малых БПЛА считатеся возможность их задействования без длительной предварительной подготовки. В частности, «Фульмар» готов к использованию уже через 20 мин. Микро-БПЛА запускаются еще быстрее. По этой причине в 2016 году капитан-лейтенант ВМС США Кристофер КЕЙТЛИ (Christopher KIETHLEY) предложил иметь миниатюрные вертолеты на всех кораблях и подводных лодках. После сигнала «человек за бортом» задачей этих БПЛА должен стать немедленный поиск пропавшего человека, пока корабль делал разворот. Тихоокеанский флот США в настоящее время изучает реализацию этой концепции.


БПЛА среднего размера

Беспилотные летательные аппараты средних размеров используются, как правило, непосредственно с борта корабля-носителя. Например, 760 кг беспилотный вертолет VSR700 производства концерна «Эабас» (Airbus ). Летные испытания модели назначены на 2018 год. Начало серийного производства возможно в 2019 году. Ожидается, что БПЛА первоначально будет приобретаться для фрегатов ВМС Франции.


Состав полезной нагрузки общим весом 250 кг включает EO/IR датчики и РЛС. Дополнительными элементами могут быть гидролокационный буй для поиска подводных лодок или спасательные плоты. Продолжительность выполнение боевого задания – до 10 часов. В качестве преимуществ своей модели Airbus подчеркивает ее более высокую производительность по сравнению с «Кемкоптер S-100» и более низкую цену по сравнению с MQ-8.

В этой размерной категории имеются также реактивные БПЛА. Согласно данным информационного агентства «Фарс», стартующий с суши иранский дрон «Садек 1» (Sadegh 1 ) достигает сверхзвуковой скорости. Высота полета в ходе выполнения миссии составляет 7700 м. В дополнение к разведывательному оборудованию БПЛА несет также две ракеты типа воздух-воздух. Отмечается, что именно этот БПЛА, принятый на вооружение в 2014 году, часто провоцирует корабли и самолеты ВМС США в Персидском заливе.


Большие беспилотные летательные аппараты

К этой категории БПЛА относятся аппараты, которые с учетом размеров фюзеляжа, веса и несущей поверхности крыла, подобны пилотируемым машинам. Причем часто, размах крыльев беспилотников гораздо больше, чем у пилотируемых самолетов. Наиболее крупные БПЛА, как правило, обладают самой большой дальностью, высотой, а также продолжительностью полета.

  • средневысотные с большой продолжительностью полета (Medium Altitude/Long Endurance, MALE );
  • высотные с большой продолжительностью полета (High Altitude/Long Endurance, HALE ).

При этом, оба класса БПЛА, даже если они и применяются как морские системы, но из-за своих размеров применяются, главным образом, с наземных аэродромов.

Беспилотный морской разведчик ВМС США MQ-4C «Тритон» (Triton ) имеет практический потолок выполнения задач 16 000 м и, следовательно, относится к HALE классу. Имея взлетный вес 14 600 кг и размах крыла в 40 м, MQ-4C считается одним из крупнейших морских БПЛА. Радиус его применения составляет 2000 морских миль. Согласно информации, опубликованной в пресс-релизе ВМС США, в течение 24 часового задания один БПЛА охватывает площадь 2,7 млн. кв. миль. Это, примерно, соответствует площади Средиземного моря, включая прибрежные районы.


В сравнении с MQ-4C итальянский БПЛА Piaggio P.1HH Hammerhead относится к MALE классу. Фактически, этот БПЛА весом 6 000 кг, с размахом крыла 15,6 м является производной административного самолета P180 Avanti II. P.1HH.


Два турбовинтовых двигателя позволяют развивать максимальную скорость 395 узлов (730 км в час). На скорости 135 узлов (около 250 км в час) БПЛА готов вести 16-часовое барражирование на высоте 13 800 м. Максимальная дальность полета составляет 4 400 морских миль. Нормальный боевой радиус – 1500 морских миль.

Беспилотный самолет предназначен для выполнения разведывательных задач над землей или морем (мониторинг прибрежных вод или открытого океана). Хотя летные испытания еще идут, Объединенные Арабские Эмираты уже заказали восемь машин. Определенный интерес проявляют и ВС Италии.

Возможно ударное применение беспилотных систем классов MALE и HALE. Так, согласно данным руководства проекта, в 2017 году достиг стадии серийного производства китайский дрон CH-5 (MALE). Западные эксперты ставят этот факт под сомнение, поскольку беспилотник совершил свой первый дальний полет только в 2015 году.


Планер имеет длину 11 м, размах крыла – 21 м. Его конфигурация аналогична американскому БПЛА MQ-9 «Рипер» (Reaper , Жнец). Как заявил в июле 2017 года китайский военный эксперт Ван ЦЯН (Wang QIANG), модель будет играть значительную роль в обеспечении морской безопасности и разведке.

БПЛА обеспечивает ориентировочный эксплуатационный потолок в 7 000 м и может вмещать до 16 единиц оружия класса воздух-земля (полезная грузоподъемность – 600 кг). Боевой радиус, по разным источникам, составляет от 1 200 до 4 000 морских миль. Журнал «Джейн», цитируя китайских должностных лиц, сообщает, что CH-5, в зависимости от двигателя, может оставаться в воздухе от 39 до 60 час. Согласно данным производителя, корпорации «Чайна Аэроспейс Сайенс энд Технолоджи Корпорейнш» (China Aerospace Science and Technology Corporation, CASC), возможно скоординированное управление нескольких CH-5.

Семейства БПЛА

Все чаще возникают, так называемые, «семейства БПЛА» из специализированных дополняющих друг друга моделей. Примером служит серия «Растом» (Rustom , Воин), которая разрабатывается управлением исследований и развития ВС Индии.


Беспилотный аппарат MALE класса Rustom 1 имеет 5 м в длину и размах крыла – 8м. Его полезная грузоподъемность составляет 95 кг, практический потолок – 7 900 м, а продолжительность полета – 12 час.

Модель Rustom H – БПЛА класса HALE. Аппарат имеет длину 9,5 м, размах крыла – 20,6 м. Полезная нагрузка – 350 кг. Практический потолок – 10 600 м. Продолжительность полета – 24 час. В настоящее время на базе Rustom H разрабатывается разведывательный Rustom 2. Сообщается, что ВМС Индии первоначально приобретут 25 единиц разных версий Rustom.


Более сложным является индийский проект «Гхатак» (Ghatak) по разработке беспилотного истребителя-бомбардировщика невидимки. В настоящее время создается нелетная модель в масштабе 1:1. На этой модели пройдет тестирование радиолокационной подписи дрона, а также эффективность его радиолокационного отражения.

Техническую поддержку проекта Индия получает от Франции. Вместе с тем, индийское министерство обороны подчеркивает, что речь идет о развитии полностью отечественного проекта. Время первого полета дельтовидного прототипа с взлетной массой 15 тонн, в настоящее время не определено.


По материалам журнала «MarineForum»