Знайти найменше значення функції за допомогою похідної. Як вирішувати задачі B15 без похідних

Іноді завдання B14 трапляються «погані» функції, котрим складно знайти похідну. Раніше таке було лише на пробниках, але зараз ці завдання настільки поширені, що вже не можуть бути ігноровані під час підготовки до ЄДІ. І тут працюють інші прийоми, одне із яких монотонність. Визначення Функція f (x) називається монотонно зростаючою на відрізку , якщо для будь-яких точок x 1 і x 2 цього відрізка виконується таке: x 1


Визначення. Функція f (x) називається монотонно спадаючою на відрізку , якщо для будь-яких точок x 1 і x 2 цього відрізка виконується таке: x 1 f (x 2). Іншими словами, для зростання функції чим більше x, тим більше f (x). Для спадної функції все навпаки: що більше x, то менше f(x).


приклади. Логарифм монотонно зростає, якщо основа a > 1, і монотонно зменшується, якщо 0 0. f(x) = log a x (a > 0; a 1; x > 0) 1 і монотонно зменшується, якщо 0 0. f (x) = log a x (a > 0; a 1; x > 0)"> 1, і монотонно зменшується, якщо 0 0. f (x) = log a x (a > 0; a 1; 1, і монотонно зменшується, якщо 0 0. f (x) = log a x (a > 0; a 1; x > 0)" title="Приклади .Логарифм монотонно зростає, якщо основа a > 1, і монотонно зменшується, якщо 0 0. f(x) = log a x (a > 0; a 1; x > 0)"> title="приклади. Логарифм монотонно зростає, якщо основа a > 1, і монотонно зменшується, якщо 0 0. f(x) = log a x (a > 0; a 1; x > 0)"> !}




приклади. Показова функція поводиться аналогічно логарифму: зростає при a > 1 і зменшується при 0 0: 1 і убуває при 0 0:"> 1 і убуває при 0 0:"> 1 і убуває при 0 0:" title="Приклади. Показова функція поводиться аналогічно логарифму: росте при a > 1 і убуває при 0 0:"> title="приклади. Показова функція поводиться аналогічно логарифму: зростає при a > 1 і зменшується при 0 0:"> !}






0) або вниз (a 0) або вниз (a 9Координати вершини параболи Найчастіше аргумент функції замінюється на квадратний тричлен виду. 0) або вниз (a 0) або найбільше (a 0) або вниз (a 0) або вниз (a title="Координати вершини параболи Найчастіше аргумент функції замінюється на квадратний тричлен виду Його графік стандартна парабола, в якій нас цікавлять гілки: Гілки параболи можуть йти вгору (при a > 0) або вниз (a








Відрізок за умови завдання відсутня. Отже, обчислювати f(a) та f(b) не потрібно. Залишається розглянути лише точки екстремуму; Але таких точок лише одна це вершина параболи x 0, координати якої обчислюються буквально усно і без будь-яких похідних.


Таким чином, розв'язання задачі різко спрощується і зводиться до двох кроків: Виписати рівняння параболи і знайти її вершину за формулою: Знайти значення вихідної функції в цій точці: f (x 0). Якщо жодних додаткових умовні, це і буде відповіддю.




0. Вершина параболи: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3" title="Знайди найменше значенняфункції: Рішення: Під коренем стоїть квадратична функціяГрафік цієї функції парабола гілками вгору, оскільки коефіцієнт a = 1 > 0. Вершина параболи: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3" 18Знайдіть найменше значення функції: Рішення: Під коренем стоїть квадратична функція Графік цієї функції парабола гілками вгору, оскільки коефіцієнт a = 1 > 0. Вершина параболи: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3 0. Вершина параболи: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3"> 0. Вершина параболи: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3"> 0. Вершина параболи: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3" title="Знайди найменше значення функції: Рішення: Під коренем стоїть квадратична функція Графік цієї функції парабола гілками вгору, оскільки коефіцієнт a = 1 > 0. Вершина параболи: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3"> title="Знайдіть найменше значення функції: Рішення: Під коренем стоїть квадратична функція Графік цієї функції парабола гілками вгору, оскільки коефіцієнт a = 1 > 0. Вершина параболи: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3"> !}




Знайдіть найменше значення функції: Рішення Під логарифмом знову квадратична функція. Графік парабола гілками вгору, т.к. a = 1 > 0. Вершина параболи: x 0 = b/(2a) = 2/(2 · 1) = 2/2 = 1 0. Вершина параболи: x 0 = b/(2a) = 2/(2 · 1) = 2/2 = 1"> 0. Вершина параболи: x 0 = b/(2a) = 2/(2 · 1) = 2/2 = 1"> 0. Вершина параболи: x 0 = b/(2a) = 2/(2 · 1) = 2/2 = 1" title="Знайди найменше значення функції: Рішення Під логарифмом знову квадратична функція. Графік парабола гілками вгору, т.к."> title="Знайдіть найменше значення функції: Рішення Під логарифмом знову квадратична функція. Графік парабола гілками вгору, т.к. a = 1 > 0. Вершина параболи: x 0 = b/(2a) = 2/(2 · 1) = 2/2 = 1"> !}




Знайдіть найбільше значення функції: Рішення: У показнику стоїть квадратична функція Перепишемо її у нормальному вигляді: Очевидно, що графік цієї функції парабола, гілки вниз (a = 1



Наслідки з області визначення функції Іноді для вирішення завдання B14 недостатньо просто знайти вершину параболи. Шукане значення може лежати на кінці відрізка, а зовсім не в точці екстремуму. Якщо завдання взагалі не зазначений відрізок, дивимося на область допустимих значень вихідної функції. А саме:


0 2. Арифметичний квадратний коріньіснує тільки з невід'ємних чисел: 3.Знаменник дробу не повинен дорівнювати нулю:" тільки з невід'ємних чисел: 3.Знаменник дробу не повинен дорівнювати нулю:" class="link_thumb"> 26 !} 1. Аргумент логарифму має бути позитивним: y = log a f (x) f (x) > 0 2. Арифметичний квадратний корінь існує тільки з невід'ємних чисел: 3.Знаменник дробу не повинен дорівнювати нулю: 0 2. Арифметичний квадратний корінь існує тільки з невід'ємних чисел: 3.Знаменник дробу не повинен дорівнювати нулю:"> 0 2. Арифметичний квадратний корінь існує тільки з невід'ємних чисел: 3.Знаменник дробу не повинен дорівнювати нулю:"> 0 2.Арифметичний квадратний корінь існує тільки з невід'ємних чисел: 3.Знаменник дробу не повинен дорівнювати нулю:" корінь існує тільки з невід'ємних чисел: 3.Знаменник дробу не повинен дорівнювати нулю:"> title="1. Аргумент логарифму має бути позитивним: y = log a f (x) f (x) > 0 2. Арифметичний квадратний корінь існує тільки з невід'ємних чисел: 3.Знаменник дробу не повинен дорівнювати нулю:"> !}


Рішення Під коренем знову квадратична функція. Її графік парабола, але гілки спрямовані вниз, оскільки a = 1
Тепер знайдемо вершину параболи: x 0 = b/(2a) = (2)/(2 · (1)) = 2/(2) = 1 Точка x 0 = 1 належить відрізку ОДЗ і це добре. Тепер вважаємо значення функції в точці x 0, а також на кінцях ОДЗ: y(3) = y(1) = 0 Отже, отримали числа 2 і 0. Нас просять знайти найбільше число 2. Відповідь: 2






Зверніть увагу: нерівність сувора, тому кінці не належать ОДЗ. Цим логарифм відрізняється від кореня, де кінці нас повністю влаштовують. Шукаємо вершину параболи: x 0 = b/(2a) = 6/(2 · (1)) = 6/(2) = 3 Вершина параболи підходить за ОДЗ: x 0 = 3 (1; 5). Але оскільки кінці відрізка нас не цікавлять, вважаємо значення функції лише у точці x 0:


Y min = y(3) = log 0,5 (6 ·) = = log 0,5 (18 9 5) = log 0,5 4 = 2 Відповідь: -2

Що таке екстремум функції та яка необхідна умова екстремуму?

Екстремумом функції називається максимум і мінімум функції.

Необхідна умова максимуму і мінімуму (екстремуму) функції таке: якщо функція f(x) має екстремум у точці х = а, то цій точці похідна або дорівнює нулю, або нескінченна, або немає.

Ця умова необхідна, але не достатня. Похідна в точці х = а може звертатися в нуль, у нескінченність або не існувати без того, щоб функція мала екстремум у цій точці.

Яка достатня умова екстремуму функції (максимум або мінімум)?

Перша умова:

Якщо в достатній близькості від точки х = а похідна f? максимум

Якщо в достатній близькості від точки х = а похідна f? мінімумза умови, що функція f(x) тут безперервна.

Натомість можна скористатися другою достатньою умовою екстремуму функції:

Нехай у точці х = а перша похідна f?(x) перетворюється на нуль; якщо у своїй друга похідна f??(а) негативна, то функція f(x) має у точці x = a максимум, якщо позитивна - то мінімум.

Що таке критична точка функції та як її знайти?

Це значення аргументу функції, у якому функція має екстремум (тобто максимум чи мінімум). Щоб його знайти, потрібно знайти похіднуфункції f?(x) і, прирівнявши її до нуля, вирішити рівняння f?(x) = 0. Коріння цього рівняння, і навіть ті точки, у яких немає похідна цієї функції, є критичними точками, т. е. значеннями аргументу, у яких може бути екстремум. Їх можна легко визначити, глянувши на графік похідної: нас цікавлять ті значення аргументу, за яких графік функції перетинає вісь абсцис (вісь Ох) і ті, за яких графік зазнає розривів.

Наприклад знайдемо екстремум параболи.

Функція y(x) = 3x2 + 2x – 50.

Похідна функції: y? (x) = 6x + 2

Вирішуємо рівняння: y? (x) = 0

6х + 2 = 0, 6х = -2, х = -2/6 = -1/3

У даному випадкукритична точка – це х0=-1/3. Саме при цьому значенні аргументу функція має екстремум. Щоб його знайти, підставляємо для функції замість «х» знайдене число:

y0 = 3*(-1/3)2 + 2*(-1/3) - 50 = 3*1/9 - 2/3 - 50 = 1/3 - 2/3 - 50 = -1/3 - 50 = -50,333.

Як визначити максимум і мінімум функції, тобто. її найбільше та найменше значення?

Якщо знак похідної під час переходу через критичну точку х0 змінюється з «плюсу» на «мінус», то х0 є точка максимуму; якщо ж знак похідної змінюється з мінусу на плюс, то х0 є точка мінімуму; якщо знак не змінюється, то у точці х0 ні максимуму, ні мінімуму немає.

Для розглянутого прикладу:

Беремо довільне значення аргументу ліворуч від критичної точки: х = -1

При х = -1 значення похідної буде у? (-1) = 6 * (-1) + 2 = -6 + 2 = -4 (тобто знак - "мінус").

Тепер беремо довільне значення аргументу праворуч від критичної точки: х = 1

При х = 1 значення похідної буде у (1) = 6 * 1 + 2 = 6 + 2 = 8 (тобто знак - плюс).

Як бачимо, похідна під час переходу через критичну точку змінила знак із мінуса на плюс. Отже, за критичного значення х0 ми маємо точку мінімуму.

Найбільше та найменше значення функції на інтервалі(на відрізку) знаходять за такою ж процедурою тільки з урахуванням того, що, можливо, не всі критичні точки лежатимуть усередині зазначеного інтервалу. Ті критичні точки, які перебувають за межею інтервалу, слід виключити з розгляду. Якщо всередині інтервалу знаходиться лише одна критична точка – у ній буде або максимум, або мінімум. У цьому випадку для визначення найбільшого та найменшого значень функції враховуємо також значення функції на кінцях інтервалу.

Наприклад, знайдемо найбільше та найменше значення функції

y(x) = 3sin(x) - 0,5х

на інтервалах:

Отже, похідна функції -

y?(x) = 3cos(x) - 0,5

Вирішуємо рівняння 3cos(x) - 0,5 = 0

cos(x) = 0,5/3 = 0,16667

х = ± arccos (0,16667) + 2πk.

Знаходимо критичні точки на інтервалі [-9; 9]:

х = arccos (0,16667) - 2π * 2 = -11,163 (не входить в інтервал)

х = -arccos (0,16667) - 2π * 1 = -7,687

х = arccos (0,16667) - 2π * 1 = -4,88

x = -arccos(0,16667) + 2π*0 = -1,403

x = arccos(0,16667) + 2π*0 = 1,403

x = -arccos(0,16667) + 2π*1 = 4,88

x = arccos(0,16667) + 2π*1 = 7,687

х = -arccos(0,16667) + 2π*2 = 11,163 (не входить до інтервалу)

Знаходимо значення функції при критичних значеннях аргументу:

y(-7,687) = 3cos(-7,687) - 0,5 = 0,885

y(-4,88) = 3cos(-4,88) - 0,5 = 5,398

y(-1,403) = 3cos(-1,403) - 0,5 = -2,256

y(1,403) = 3cos(1,403) - 0,5 = 2,256

y(4,88) = 3cos(4,88) - 0,5 = -5,398

y(7,687) = 3cos(7,687) - 0,5 = -0,885

Видно, що на інтервалі [-9; 9] найбільше значення функція має за x = -4,88:

x = -4,88, у = 5,398,

а найменше – при х = 4,88:

x = 4,88, у = -5,398.

На інтервалі [-6; -3] маємо лише одну критичну точку: х = -4,88. Значення функції при х = -4,88 дорівнює у = 5,398.

Знаходимо значення функції на кінцях інтервалу:

y(-6) = 3cos(-6) - 0,5 = 3,838

y(-3) = 3cos(-3) - 0,5 = 1,077

На інтервалі [-6; -3] маємо найбільше значення функції

у = 5,398 при x = -4,88

найменше значення -

у = 1,077 при x = -3

Як знайти точки перегину графіка функції та визначити сторони опуклості та увігнутості?

Щоб знайти всі точки перегину лінії y = f(x), треба знайти другу похідну, прирівняти її до нуля (вирішити рівняння) і випробувати всі значення х, для яких друга похідна дорівнює нулю, нескінченна або не існує. Якщо при переході через одне з цих значень друга похідна змінює знак, графік функції має в цій точці перегин. Якщо ж не змінює, то перегину немає.

Коріння рівняння f? (x) = 0, а також можливі точки розриву функції та другої похідної розбивають область визначення функції на ряд інтервалів. Випуклість на кожному їх інтервалі визначається знаком другої похідної. Якщо друга похідна в точці на досліджуваному інтервалі позитивна, лінія y = f(x) звернена тут увігнутістю догори, і якщо негативна - то донизу.

Як знайти екстремуми функції двох змінних?

Щоб знайти екстремуми функції f(x,y), що диференціюється в області її завдання, потрібно:

1) знайти критичні точки, а для цього вирішити систему рівнянь

fх? (x, y) = 0, f? (x, y) = 0

2) для кожної критичної точки Р0(a;b) дослідити, чи залишається незмінним знак різниці

всім точок (х;у), досить близьких до Р0. Якщо різницю зберігає позитивний знак, то точці Р0 маємо мінімум, якщо негативний - то максимум. Якщо різницю не зберігає знака, то точці Р0 екстремуму немає.

Аналогічно визначають екстремуми функції при більшій кількостіаргументів.

Дорогі друзі! До групи завдань, пов'язаних з похідною, входять завдання — в умові дано графік функції, кілька точок на цьому графіку і стоїть питання:

У якій точці значення похідної найбільше (найменше)?

Коротко повторимо:

Похідна в точці дорівнює кутовому коефіцієнту дотичної проходить черезцю точку графіка.

Уголовний коефіцієнт дотичної у свою чергу дорівнює тангенсу кута нахилу цієї дотичної.

*Мається на увазі кут між дотичною та віссю абсцис.

1. На інтервалах зростання функції похідна має позитивне значення.

2. На інтервалах її спадання похідна має негативне значення.


Розглянемо наступний ескіз:


У точках 1,2,4 похідна функції має негативне значення, оскільки ці точки належать інтервалам спадання.

У точках 3,5,6 похідна функції має позитивне значення, оскільки ці точки належать інтервалам зростання.

Як бачимо, зі значенням похідної все ясно, тобто визначити який вона має знак (позитивний чи негативний) у певній точці графіка зовсім нескладно.

При чому, якщо ми подумки побудуємо дотичні в цих точках, то побачимо, що прямі кути, що проходять через точки 3, 5 і 6 утворюють з віссю оХ, що лежать в межах від 0 до 90 про, а прямі проходять через точки 1, 2 і 4 утворюють з віссю оХ кути в межах від 90 до 180 о.

*Взаємозв'язок зрозумілий: дотичні проходять через точки належать інтервалам зростання функції утворюють з віссю оХ гострі кути, дотичні проходять через точки належать інтервалам зменшення функції утворюють з віссю оХ тупі кути.

Тепер важливе питання!

А як змінюється значення похідної? Адже дотична у різних точках графіка безперервної функції утворює різні кути, залежно від цього, через яку точку графіка вона проходить.

*Або, кажучи простою мовою, дотична розташована як би «горизонтальніше» або «вертикальніше». Подивіться:

Прямі утворюють з віссю оХ кути в межах від 0 до 90 о


Прямі утворюють з віссю оХ кути в межах від 90 до 180 о


Тому, якщо стоятимуть питання:

— в якій із точок графіка значення похідної має найменше значення?

— у якій із точок графіка значення похідної має найбільше значення?

то для відповіді необхідно розуміти, як змінюється значення тангенсу кута дотичної в межах від 0 до 180 о.

*Як уже сказано, значення похідної функції в точці дорівнює тангенсу кута нахилу дотичної до осі оХ.

Значення тангенсу змінюється так:

При зміні кута нахилу прямої від 0 до 90 про значення тангенса, а значить і похідної, змінюється відповідно від 0 до +∞;

При зміні кута нахилу прямий від 90 до 180 значення тангенса, а значить і похідної, змінюється відповідно –∞ до 0.

Наочно це видно за графіком функції тангенсу:

Говорячи простою мовою:

При куті нахилу дотичної від 0 до 90 про

Чим він ближче до 0о, тим більше значення похідної буде близько до нуля (з позитивного боку).

Чим кут ближче до 90о, тим більше значення похідної буде збільшуватися до +∞.

При куті нахилу дотичної від 90 до 180 про

Чим він ближчий до 90 про, тим більше значення похідної зменшуватиметься до –∞.

Чим кут буде ближче до 180 про, тим більше значення похідної буде близько до нуля (з негативного боку).

317543. На малюнку зображено графік функції y = f(x) та відзначені точки–2, –1, 1, 2. У якій із цих точок значення похідної найбільше? У відповіді вкажіть цю точку.


Маємо чотири точки: дві з них належать інтервалам на яких функція зменшується (це точки -1 і 1) і два інтервалам на яких функція зростає (це точки -2 і 2).

Можемо відразу зробити висновок у тому, що у точках –1 і 1 похідна має негативне значення, у точках –2 і 2 вона має позитивне значення. Отже в даному випадку необхідно проаналізувати точки -2 і 2 і визначити в якому значення буде найбільшим. Побудуємо дотичні, що проходять через зазначені точки:


Значення тангенсу кута між прямою a і віссю абсцис буде більшим за значення тангенса кута між прямою b і цією віссю. Це означає, що значення похідної у точці –2 буде найбільшим.

Відповімо на таке запитання: у якій із точок –2, –1, 1 чи 2 значення похідної є найбільшим негативним? У відповіді вкажіть цю точку.

Похідна матиме негативне значення в точках, що належать інтервалам спадання, тому розглянемо точки -2 і 1. Побудуємо дотичні проходять через них:


Бачимо, що тупий кут між прямою b і віссю оХ знаходиться «ближче» до 180о , Тому його тангенс буде більше тангенса кута, утвореного прямою а і віссю ОХ.

Таким чином, у точці х = 1 значення похідної буде найбільшим негативним.

317544. На малюнку зображено графік функції y = f(x) та відзначені точки–2, –1, 1, 4. У якій із цих точок значення похідної найменше? У відповіді вкажіть цю точку.


Маємо чотири точки: дві з них належать інтервалам, на яких функція зменшується (це точки –1 та 4) та дві інтервалам, на яких функція зростає (це точки –2 та 1).

Можемо відразу зробити висновок у тому, що у точках –1 і 4 похідна має негативне значення, у точках –2 і 1 вона має позитивне значення. Отже, у разі необхідно проаналізувати точки –1 і 4 і визначити – у якому їх значенні буде найменшим. Побудуємо дотичні, що проходять через зазначені точки:


Значення тангенса кута між прямою a і віссю абсцис буде більшим за значення тангенса кута між прямою b і цією віссю. Це означає, що значення похідної у точці х = 4 буде найменшим.

Відповідь: 4

Сподіваюся, що «не перенавантажив» вас кількістю написаного. Насправді все дуже просто, варто тільки зрозуміти властивості похідної, її геометричний зміст і як змінюється значення тангенса кута від 0 до 180 о.

1. Спочатку визначте знаки похідної в даних точках (+ або -) та оберіть необхідні точки (залежно від поставленого питання).

2. Побудуйте дотичні у цих точках.

3. Користуючись графіком тангесоїди, схематично позначте кути та відобразітьА Олександр.

PS: Буду вдячний Вам, якщо розповісте про сайт у соціальних мережах.

Насправді часто доводиться використовувати похідну у тому, щоб обчислити найбільше і найменше значення функції. Ми виконуємо цю дію тоді, коли з'ясовуємо, як мінімізувати витрати, збільшити прибуток, розрахувати оптимальне навантаження виробництва та інших., тобто у випадках, коли необхідно визначити оптимальне значення будь-якого параметра. Щоб вирішити такі завдання правильно, треба добре розуміти, що таке найбільше та найменше значення функції.

Yandex.RTB R-A-339285-1

Зазвичай ми визначаємо ці значення в рамках деякого інтервалу x , який може своєю чергою відповідати всій області визначення функції або її частини. Це може бути як відрізок [a; b ] , і відкритий інтервал (a ; b) , (a ; b ) , [ a ; b) , нескінченний інтервал (a ; b) , (a ; b ) , [ a ; b) чи нескінченний проміжок - ∞ ; a , (- ∞ ; a ) , [ a ; + ∞) , (- ∞ ; + ∞) .

У цьому матеріалі ми розповімо, як обчислюється найбільше та найменше значення явно заданої функціїз однією змінною y = f (x) y = f (x).

Основні визначення

Почнемо, як завжди, із формулювання основних визначень.

Визначення 1

Найбільше значення функції y = f (x) на деякому проміжку x – це значення m a x y = f (x 0) x ∈ X , яке за будь-якого значення x x ∈ X , x ≠ x 0 робить справедливою нерівність f (x) ≤ f (x 0).

Визначення 2

Найменше значення функції y = f (x) на деякому проміжку x – це значення m i n x ∈ X y = f (x 0) , яке за будь-якого значення x ∈ X , x ≠ x 0 робить справедливою нерівність f(X f (x) ≥ f(x0) .

Ці визначення є досить очевидними. Ще простіше можна сказати так: найбільше значення функції – це її саме велике значенняна відомому інтервалі при абсцисі x 0 , а найменше - це найменше значення, що приймається на тому ж інтервалі при x 0 .

Визначення 3

Стаціонарними точками називаються такі значення аргументу функції, у яких її похідна звертається до 0 .

Для чого нам потрібно знати, що таке стаціонарні точки? Для відповіді це питання треба згадати теорему Ферма. З неї випливає, що стаціонарна точка – це така точка, в якій знаходиться екстремум функції, що диференціюється (тобто її локальний мінімум або максимум). Отже, функція прийматиме найменше або найбільше значення на певному проміжку саме в одній зі стаціонарних точок.

Ще функція може набувати найбільше чи найменше значення у тих точках, у яких сама функція є певної, та її першої похідної немає.

Перше питання, яке виникає при вивченні цієї теми: чи у всіх випадках ми можемо визначити найбільше чи найменше значення функції на заданому відрізку? Ні, ми не можемо цього зробити тоді, коли межі заданого проміжку збігатимуться з межами області визначення, або якщо ми маємо справу з нескінченним інтервалом. Буває і так, що функція в заданому відрізку або на нескінченності прийматиме нескінченно малі або нескінченно великі значення. У цих випадках визначити найбільше та/або найменше значення неможливо.

Зрозумілішими ці моменти стануть після зображення на графіках:

Перший малюнок показує нам функцію, яка набуває найбільшого і найменшого значення (m a x y і m i n y) в стаціонарних точках, розташованих на відрізку [ - 6 ; 6].

Докладно розберемо випадок, зазначений на другому графіку. Змінимо значення відрізка на [1; 6] і отримаємо, що найбільше значення функції досягатиметься в точці з абсцисою у правій межі інтервалу, а найменше – у стаціонарній точці.

На третьому малюнку абсциси точок являють собою граничні точки відрізка [-3; 2]. Вони відповідають найбільшому та найменшому значенню заданої функції.

Тепер подивимось на четвертий малюнок. У ньому функція приймає m a x y (найбільше значення) і m i n y (найменше значення) у стаціонарних точках на відкритому інтервалі (-6; 6).

Якщо ми візьмемо інтервал [1; 6) то можна сказати, що найменше значення функції на ньому буде досягнуто в стаціонарній точці. Найбільшого значення нам буде невідомо. Функція могла б прийняти найбільше значення при x , що дорівнює 6 якщо б x = 6 належала інтервалу. Саме цей випадок намальовано на графіку 5 .

На графіку 6 найменше значення дана функція набуває у правій межі інтервалу (- 3 ; 2 ] , а про найбільше значення ми не можемо зробити певних висновків.

На малюнку 7 бачимо, що функція буде мати m a x y в стаціонарній точці, що має абсцису, рівну 1 . Найменшого значення функція досягне на межі інтервалу з правої сторони. На мінус нескінченності значення функції асимптотично наближатимуться до y = 3 .

Якщо ми візьмемо інтервал x ∈ 2; + ∞ , то побачимо, що задана функція не прийматиме на ньому ні найменшого, ні найбільшого значення. Якщо x прагне 2 , то значення функції прагнутимуть мінус нескінченності, оскільки пряма x = 2 – це вертикальна асимптота. Якщо ж абсцис прагне до плюс нескінченності, то значення функції асимптотично наближатимуться до y = 3 . Саме це випадок зображено малюнку 8 .

У цьому пункті ми наведемо послідовність дій, яку потрібно виконати знаходження найбільшого чи найменшого значення функції на певному відрізку.

  1. Спочатку знайдемо область визначення функції. Перевіримо, чи входить до неї заданий за умови відрізок.
  2. Тепер обчислимо точки, що містяться в даному відрізку, в яких немає першої похідної. Найчастіше їх можна зустріти у функцій, аргумент яких записаний під знаком модуля, або у статечних функцій, показник яких є дрібно раціональним числом.
  3. Далі з'ясуємо, які стаціонарні точки потраплять у заданий відрізок. Для цього треба обчислити похідну функції, потім прирівняти її до 0 і вирішити рівняння, що вийшло в результаті, після чого вибрати відповідне коріння. Якщо у нас не вийде жодної стаціонарної точки або вони не потраплятимуть у заданий відрізок, ми переходимо до наступного кроку.
  4. Визначимо, які значення прийматиме функція в заданих стаціонарних точках (якщо вони є), або в тих точках, в яких не існує першої похідної (якщо вони є), або обчислюємо значення для x = a і x = b.
  5. 5. У нас вийшов ряд значень функції, з яких тепер потрібно вибрати найбільше і найменше. Це й будуть найбільше та найменше значення функції, які нам потрібно знайти.

Подивимося, як правильно застосувати цей алгоритм під час вирішення завдань.

Приклад 1

Умова:задана функція y = x3+4x2. Визначте її найбільше та найменше значення на відрізках [1; 4] і [-4; -1].

Рішення:

Почнемо з знаходження області визначення цієї функції. У цьому випадку їй буде багато всіх дійсних чиселкрім 0 . Іншими словами, D (y) : x ∈ (- ∞ ; 0) ∪ 0 ; + ∞. Обидва відрізки, задані в умові, будуть знаходитися всередині області визначення.

Тепер обчислюємо похідну функції згідно з правилом диференціювання дробу:

y " = x 3 + 4 x 2 " = x 3 + 4 " · x 2 - x 3 + 4 · x 2 " x 4 = = 3 x 2 · x 2 - (x 3 - 4) · 2 x x 4 = x 3 - 8 x 3

Ми дізналися, що похідна функції існуватиме у всіх точках відрізків [1; 4] і [-4; -1].

Тепер треба визначити стаціонарні точки функції. Зробимо це за допомогою рівняння x 3 – 8 x 3 = 0 . У нього є тільки один дійсний корінь, що дорівнює 2 . Він буде стаціонарною точкою функції і потрапить у перший відрізок [1; 4].

Обчислимо значення функції кінцях першого відрізка й у цій точці, тобто. для x = 1, x = 2 і x = 4:

y(1) = 1 3 + 4 1 2 = 5 y (2) = 2 3 + 4 2 2 = 3 y (4) = 4 3 + 4 4 2 = 4 1 4

Ми отримали, що найбільше значення функції m a x y x ∈ [1; 4 ] = y (2) = 3 буде досягнуто за x = 1 , а найменше m i n y x ∈ [ 1 ; 4 ] = y (2) = 3 – за x = 2 .

Другий відрізок не включає жодної стаціонарної точки, тому нам треба обчислити значення функції тільки на кінцях заданого відрізка:

y(-1) = (-1) 3 + 4 (-1) 2 = 3

Значить, m a x y x ∈ [- 4; - 1] = y (- 1) = 3, m i n y x ∈ [- 4; - 1] = y(-4) = - 3 3 4 .

Відповідь:Для відрізка [1; 4] - m a x y x ∈ [1; 4 ] = y (2) = 3 , m i n y x ∈ [ 1 ; 4 ] = y (2) = 3 для відрізка [ - 4 ; - 1 ] - m a x y x ∈ [ - 4; - 1] = y (- 1) = 3, m i n y x ∈ [- 4; - 1] = y(-4) = - 3 3 4 .

на малюнку:


Перед тим як вивчити цей спосіб, радимо вам повторити, як правильно обчислювати односторонню межу та межу на нескінченності, а також дізнатися про основні методи їх знаходження. Щоб знайти найбільше та/або найменше значення функції на відкритому або нескінченному інтервалі, виконуємо послідовно такі дії.

  1. Для початку потрібно перевірити, чи буде заданий інтервал бути підмножиною області визначення цієї функції.
  2. Визначимо всі точки, які містяться в потрібному інтервалі та в яких не існує першої похідної. Зазвичай вони бувають у функцій, де аргумент укладений у знаку модуля, і у статечних функцій з дрібно раціональним показником. Якщо ж ці точки відсутні, можна переходити до наступного кроку.
  3. Тепер визначимо, які стаціонарні точки потраплять до заданого проміжку. Спочатку прирівняємо похідну до 0, розв'яжемо рівняння і підберемо відповідне коріння. Якщо ми не маємо жодної стаціонарної точки або вони не потрапляють у заданий інтервал, то відразу переходимо до подальших дій. Їх визначає вигляд інтервалу.
  • Якщо інтервал має вигляд [a; b) то нам треба обчислити значення функції в точці x = a і одностороння межа lim x → b - 0 f (x) .
  • Якщо інтервал має вигляд (a; b], то нам треба обчислити значення функції в точці x = b і одностороння межа lim x → a + 0 f (x).
  • Якщо інтервал має вигляд (a; b), то нам треба обчислити односторонні межі lim x → b - 0 f (x), lim x → a + 0 f (x).
  • Якщо інтервал має вигляд [a; + ∞) , то треба обчислити значення в точці x = a і межа плюс нескінченності lim x → + ∞ f (x) .
  • Якщо інтервал виглядає як (- ∞ ; b ) , обчислюємо значення в точці x = b і межа на мінус нескінченності lim x → - ∞ f (x) .
  • Якщо - ∞; b , то вважаємо односторонню межу lim x → b - 0 f (x) і межу на мінус нескінченності lim x → - ∞ f (x)
  • Якщо ж - ∞; + ∞ , то вважаємо межі на мінус і плюс нескінченності lim x → + f (x) , lim x → - ∞ f (x) .
  1. Наприкінці потрібно зробити висновок на основі отриманих значень функції та меж. Тут можлива безліч варіантів. Так, якщо одностороння межа дорівнює мінус нескінченності або плюс нескінченності, то відразу зрозуміло, що про найменше і найбільше значення функції сказати нічого не можна. Нижче ми розберемо один типовий приклад. Детальний описдопоможуть вам зрозуміти, що до чого. За потреби можна повернутися до малюнків 4 - 8 у першій частині матеріалу.
Приклад 2

Умова: дана функція y = 3 e 1 x 2 + x - 6 - 4 . Обчисліть її найбільше та найменше значення в інтервалах - ∞ ; - 4, - ∞; - 3, (-3; 1], (-3; 2), [1; 2), 2; + ∞, [4; + ∞).

Рішення

Насамперед знаходимо область визначення функції. У знаменнику дробу стоїть квадратний тричлен, який не повинен звертатися до 0:

x 2 + x - 6 = 0 D = 1 2 - 4 · 1 · (- 6) = 25 x 1 = - 1 - 5 2 = - 3 x 2 = - 1 + 5 2 = 2 ⇒ D (y) : x ∈ (- ∞ ; - 3) ∪ (- 3 ; 2) ∪ (2 ; + ∞)

Ми отримали область визначення функції, до якої належать всі зазначені в інтервалі.

Тепер виконаємо диференціювання функції та отримаємо:

y " = 3 e 1 x 2 + x - 6 - 4 " = 3 · e 1 x 2 + x - 6 " = 3 · e 1 x 2 + x - 6 · 1 x 2 + x - 6 " = = 3 · e 1 x 2 + x - 6 · 1 " · x 2 + x - 6 - 1 · x 2 + x - 6 "(x 2 + x - 6) 2 = - 3 · (2 ​​x + 1) · e 1 x 2 + x - 6 x 2 + x - 6 2

Отже, похідні функції існують по всій області її визначення.

Перейдемо до знаходження стаціонарних точок. Похідна функції звертається до 0 при x = - 1 2 . Це стаціонарна точка, яка знаходиться в інтервалах (-3; 1] і (-3; 2).

Обчислимо значення функції при x = - 4 для проміжку (- ∞ ; - 4 ] , а також межа на мінус нескінченності:

y (- 4) = 3 e 1 (- 4) 2 + (- 4) - 6 - 4 = 3 e 1 6 - 4 ≈ - 0 . 456 lim x → - ∞ 3 e 1 x 2 + x - 6 = 3 e 0 - 4 = - 1

Оскільки 3 e 1 6 - 4 > - 1 , значить, m a x y x ∈ (- ∞ ; - 4 ) = y (- 4) = 3 e 1 6 - 4. Це не дає нам можливості однозначно визначити найменше значення функції. зробити висновок, що внизу є обмеження - 1, оскільки саме до цього значення функція наближається асимптотично до мінус нескінченності.

Особливістю другого інтервалу є те, що в ньому немає жодної стаціонарної точки та жодної суворої межі. Отже, ні найбільшого, ні найменшого значення функції ми не зможемо обчислити. Визначивши межу на мінус нескінченності та при прагненні аргументу до - 3 з лівого боку, ми отримаємо лише інтервал значень:

lim x → - 3 - 0 3 e 1 x 2 + x - 6 - 4 = lim x → - 3 - 0 3 e 1 (x + 3) (x - 3) - 4 = 3 e 1 (- 3 - 0 + 3) (- 3 - 0 - 2) - 4 = = 3 e 1 (+ 0) - 4 = 3 e + ∞ - 4 = + ∞ lim x → - ∞ 3 e 1 x 2 + x - 6 - 4 = 3 e 0 - 4 = - 1

Значить значення функції будуть розташовані в інтервалі - 1 ; + ∞

Щоб знайти найбільше значення функції у третьому проміжку, визначимо її значення стаціонарної точці x = - 1 2 , якщо x = 1 . Також нам треба буде знати односторонню межу для того випадку, коли аргумент прагне до - 3 з правого боку:

y - 1 2 = 3 e 1 - 1 2 2 + - 1 2 - 6 - 4 = 3 e 4 25 - 4 ≈ - 1 . 444 y (1) = 3 e 1 1 2 + 1 - 6 - 4 ≈ - 1 . 644 lim x → - 3 + 0 3 e 1 x 2 + x - 6 - 4 = lim x → - 3 + 0 3 e 1 (x + 3) (x - 2) - 4 = 3 e 1 - 3 + 0 + 3 (-3 + 0 - 2) - 4 = = 3 e 1 (- 0) - 4 = 3 e - ∞ - 4 = 3 · 0 - 4 = - 4

У нас вийшло, що найбільше значення функція набуде в стаціонарній точці m a x y x ∈ (3 ; 1 ] = y - 1 2 = 3 e - 4 25 - 4. Що стосується найменшого значення, то його ми не можемо визначити. Все, що нам відомо , – це наявність обмеження знизу до -4.

Для інтервалу (-3; 2) візьмемо результати попереднього обчислення і ще раз підрахуємо, чому дорівнює одностороння межа при прагненні до 2 з лівого боку:

y - 1 2 = 3 e 1 - 1 2 2 + - 1 2 - 6 - 4 = 3 e - 4 25 - 4 ≈ - 1 . 444 lim x → - 3 + 0 3 e 1 x 2 + x - 6 - 4 = - 4 lim x → 2 - 0 3 e 1 x 2 + x - 6 - 4 = lim x → - 3 + 0 3 e 1 (x + 3) (x - 2) - 4 = 3 e 1 (2 - 0 + 3) (2 - 0 - 2) - 4 = = 3 e 1 - 0 - 4 = 3 e - ∞ - 4 = 3 · 0 - 4 = - 4

Отже, m a x y x ∈ (- 3 ; 2) = y - 1 2 = 3 e - 4 25 - 4 а найменше значення визначити неможливо, і значення функції обмежені знизу числом - 4 .

Виходячи з того, що у нас вийшло у двох попередніх обчисленнях, ми можемо стверджувати, що на інтервалі [1; 2) найбільше значення функція прийме при x = 1, а знайти найменше неможливо.

На проміжку (2 ; + ∞) функція досягне ні найбільшого, ні найменшого значення, тобто. вона прийматиме значення з проміжку - 1; + ∞.

lim x → 2 + 0 3 e 1 x 2 + x - 6 - 4 = lim x → - 3 + 0 3 e 1 (x + 3) (x - 2) - 4 = 3 e 1 (2 + 0 + 3 ) (2 + 0 - 2) - 4 = = 3 e 1 (+ 0) - 4 = 3 e + ∞ - 4 = + ∞ lim x → + ∞ 3 e 1 x 2 + x - 6 - 4 = 3 e 0 - 4 = - 1

Обчисливши, чому дорівнює значення функції при x = 4 , з'ясуємо, що m a x y x ∈ [ 4 ; + ∞) = y (4) = 3 e 1 14 - 4 і задана функція на плюс нескінченності буде асимптотично наближатися до прямої y = - 1 .

Порівняємо те, що в нас вийшло в кожному обчисленні, з графіком заданої функції. На малюнку асимптоти показано пунктиром.

Це все, що ми хотіли розповісти про знаходження найбільшого та найменшого значення функції. Ті послідовності дій, які ми привели, допоможуть зробити необхідні обчислення максимально швидко та просто. Але пам'ятайте, що часто буває корисно спочатку з'ясувати, на яких проміжках функція зменшуватиметься, а на яких зростатиме, після чого можна робити подальші висновки. Так можна більш точно визначити найбільше та найменше значення функції та обґрунтувати отримані результати.

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

Мініатюрне і досить просте завдання з розряду тих, які служать рятівним колом студенту, що плаває. На природі сонне царство середини липня, тому саме час влаштуватися з ноутбуком на пляжі. Рано-вранці заграв сонячний зайчик теорії, щоб незабаром сфокусуватися на практиці, яка, незважаючи на заявлену легкість, містить уламки скла в піску. У зв'язку з цим рекомендую сумлінно розглянути нечисленні приклади цієї сторінки. Для вирішення практичних завдань необхідно вміти знаходити похідніта розуміти матеріал статті Інтервали монотонності та екстремуми функції.

Спочатку коротко про головне. На уроці про безперервності функціїя наводив визначення безперервності у точці та безперервності на інтервалі. Зразково-показова поведінка функції на відрізку формулюється таким чином. Функція безперервна на відрізку якщо:

1) вона безперервна на інтервалі;
2) безперервна у точці справаі в точці зліва.

У другому пункті мова зайшла про так звану односторонньої безперервностіфункції у точці. Існує кілька підходів до її визначення, але я дотримуватимуся розпочатої раніше лінії:

Функція безперервна у точці справа, якщо вона визначена в цій точці та її правостороння межа збігається зі значенням функції у цій точці: . Вона ж безперервна у точці зліва, якщо визначена в даній точці та її лівостороння межа дорівнює значенню у цій точці:

Уявіть, що зелені крапки – це цвяхи, на яких закріплена чарівна гумка:

Подумки візьміть червону лінію до рук. Очевидно, що як далеко ми не розтягували графік вгору і вниз (вздовж осі), функція все одно залишиться обмеженою– огорожа зверху, огорожа знизу, і наш виріб пасеться в загоні. Таким чином, безперервна на відрізку функція обмежена на ньому. У курсі матаналізу цей начебто простий факт констатується і суворо доводиться першою теоремою Вейєрштраса.…Багато хто дратує, що в математиці нудно обґрунтовуються елементарні твердження, однак у цьому є важливий зміст. Припустимо, якийсь житель махрового середньовіччя витягував графік у небо поза видимості ось це вставляло. До винаходу телескопа обмеженість функції у космосі була зовсім очевидна! Справді, звідки ви знаєте, що на нас чекає за обрієм? Адже колись і Земля вважалася плоскою, тому сьогодні навіть звичайна телепортація потребує доказів.

Згідно другий теоремі Вейєрштраса, безперервна на відрізкуфункція досягає своєї точної верхньої граніі своєю точної нижньої грані .

Число також називають максимальним значенням функції на відрізкуі позначають через , а число – мінімальним значенням функції на відрізкуз позначкою .

У нашому випадку:

Примітка : у теорії поширені записи .

Грубо кажучи, найбільше значення є там, де найвища точка графіка, а найменше – де найнижча точка.

Важливо!Як уже загострювалася увага у статті про екстремумах функції, найбільше значення функціїі найменше значення функціїНЕ ТЕ Ж САМЕ, що максимум функціїі мінімум функції. Так, у прикладі число є мінімумом функції, але не мінімальним значенням.

До речі, а що відбувається поза відрізком? Та хоч потоп, у контексті завдання це нас абсолютно не цікавить. Завдання передбачає лише знаходження двох чисел і все!

Більше того, рішення чисто аналітичне, отже, креслення робити не треба!

Алгоритм лежить на поверхні та напрошується з наведеного малюнка:

1) Знаходимо значення функції у критичних точках, які належать даному відрізку.

Ловіть ще одну плюшку: тут відпадає необхідність перевіряти достатню умову екстремуму, оскільки, щойно було показано, наявність мінімуму або максимуму ще не гарантуєщо там мінімальне або максимальне значення. Демонстраційна функція досягає максимуму і волею долі це ж число є найбільшим значеннямфункції на відрізку. Але, зрозуміло, такий збіг має місце далеко не завжди.

Отже, на першому кроці швидше і простіше обчислити значення функції в критичних точках, що належать відрізку, не заморочуючись їсти в них екстремуми чи ні.

2) Обчислюємо значення функції кінцях відрізка.

3) Серед знайдених у 1-му та 2-му пунктах значень функції вибираємо найменше і найбільше число, записуємо відповідь.

Сідаємо на берег синього моря і б'ємо п'ятами по мілководді:

Приклад 1

Знайти найбільше та найменше значення функції на відрізку

Рішення:
1) Обчислимо значення функції у критичних точках, що належать даному відрізку:

Обчислимо значення функції у другій критичній точці:

2) Обчислимо значення функції на кінцях відрізка:

3) «Жирні» результати отримані з експонентами та логарифмами, що суттєво ускладнює їх порівняння. Тому озброїмося калькулятором або Екселем і обчислимо наближені значення, не забуваючи, що :

Ось тепер все зрозуміло.

Відповідь:

Дробно-раціональний екземпляр для самостійного вирішення:

Приклад 6

Знайти максимальне та мінімальне значення функції на відрізку